首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   7篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   9篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1975年   1篇
  1958年   1篇
  1957年   3篇
  1956年   3篇
  1955年   2篇
  1954年   2篇
  1953年   2篇
  1952年   2篇
  1950年   1篇
  1927年   1篇
排序方式: 共有106条查询结果,搜索用时 46 毫秒
31.
Over the past several decades, global warming has been linked to shifts in the distributions and abundances of species. In the southern North Sea, temperatures have increased in the last three decades and this will likely have consequences on the seasonality of marine organisms living in the area. Ctenophores such as Beroe gracilis and Pleurobrachia pileus could be particularly affected by changes in their own phenology and that of their prey, thus causing shifts in ecosystem function. Despite their global relevance and their potentially deleterious effect on the fishing industry, only a few long‐term records of ctenophore abundance exist, and most of these records are semiquantitative in nature. Therefore, our knowledge of the influence of environmental factors on their population development is presently very limited. In this study, the long‐term abundance dynamics of B. gracilis, P. pileus and their food calanoid copepods were analysed for a highly temporally resolved time series in the German Bight at Helgoland Roads. Special attention was focused on the response of these organisms to climate warming. Bayesian statistics showed that the phenology of the two ctenophores shifted in a step‐like mode in the year 1987/1988 to permanent earlier appearances. The seasonal change in the population blooms of P. pileus and B. gracilis correlated remarkably well with a step‐like increase in winter and spring sea surface temperatures of the southern North Sea. Possible explanations for the changes observed in these organisms include higher reproductive rates, increased winter survival rates or both. Interannual variations in ctenophore abundances correlated best with the interannual changes in spring temperatures, although the impact of temperature on B. gracilis appeared less pronounced. The changes in copepods abundance were not consistent with changes in P. pileus and B. gracilis. P. pileus showed longer periods of high abundance after the permanent seasonal advancement. These longer periods were correlated with a decline in the average autumn abundance of copepods. Changes in the phenology of these organisms raise the concerns on the declining state of fish stocks, which could potentially be exacerbated by gelatinous zooplankton outbreaks. These conditions may ultimately lead to trophic dead ends by channelling the flow of energy away from higher trophic levels.  相似文献   
32.
Assessing the relative role of evolutionary processes on genetic diversity is critical for understanding species response to climatic change. However, many processes, independent of climate, can lead to the same genetic pattern. Because effective population size and gene flow are affected directly by abundance and dispersal, population ecology has the potential to profoundly influence patterns of genetic variation over microevolutionary timescales. Here, we use aDNA data and simulations to explore the influence of population ecology and Holocene climate change on genetic diversity of the Uinta ground squirrel (Spermophilus armatus). We examined phylochronology from three modern and two ancient populations spanning the climate transitions of the last 3000 years. Population genetic analyses based on summary statistics suggest that changes in genetic diversity and structure coincided with the Medieval Warm Period (MWP), c. 1000 years ago. Serial coalescent simulations allowed us to move beyond correlation with climate to statistically compare the likelihoods of alternative population histories given the observed data. The data best fit source–sink models that include large, mid‐elevation populations that exchange many migrants and small populations at the elevational extremes. While the MWP is likely to have reduced genetic diversity, our model‐testing approach revealed that MWP‐driven changes in genetic structure were not better supported for the range of models explored. Our results point to the importance of species ecology in understanding responses to climate, and showcase the use of ancient genetic data and simulation‐based inference for unraveling the relative roles of microevolutionary processes.  相似文献   
33.
1. Female parasitoids have evolved various foraging strategies in order to find suitable hosts. Egg parasitoids have been shown to exploit plant cues induced by the deposition of host eggs. 2. The tiny wasp Trichogramma brassicae uses oviposition‐induced cues from Brussels sprouts to locate eggs of the cabbage white butterflies Pieris brassicae and Pieris rapae that differ in their egg‐laying behaviour. These plant cues are elicited by male‐derived anti‐aphrodisiac pheromones in the accessory reproductive gland (ARG) secretions of mated female butterflies. However, the closely related generalist species Trichogramma evanescens does not respond to Brussels sprout cues induced by the deposition of P. brassicae egg clutches. 3. Here we showed in two‐choice bioassays that T. evanescens wasps respond to Brussels sprout cues induced by (i) the deposition of single eggs by P. rapae, and (ii) the application of ARG secretions from either mated P. rapae females, or from virgin female butterflies in combination with P. rapae's anti‐aphrodisiac compound indole. The wasps only associatively learned to respond to Brussels sprout cues after applying indole alone by linking those cues with the presence of P. rapae eggs. 4. Our results indicate that Trichogramma wasps more commonly exploit oviposition‐induced plant cues to locate their host eggs. Generalist wasps show less specificity in their response than specialists and employ associative learning.  相似文献   
34.
Time budgets of free-living chicks of Arctic Terns Sterna paradisaea and Common Terns S. hirundo throughout development are presented with special reference to changes in time allocation when growth rate varies. Chicks of both species were inactive most of the time observed (87%). Time allocated to the different behaviours changed during development and was generally better correlated with body mass than age. Slower growing nestlings were brooded more and allocated more time to quiescence and less time to locomotion, preening, begging and attacking (the latter two significant only for the Arctic Tern). The energetic implications of variation in time budgets with age and growth rate were considered. Parental brooding resulted in an average energy saving of nearly 40% of an individual nestling's thermoregulatory costs. Whereas thermoregulatory costs remained nearly unchanged in Arctic Tern chicks, these were negatively correlated with growth rate in Common Terns. Tentatively, we estimated a 30% reduction in a nestling's total energy requirement for a 50% reduction in average growth rate for both species.  相似文献   
35.
36.
37.
1. How species reach and persist in isolated habitats remains an open question in many cases, especially for rapidly spreading invasive species. This is particularly true for temporary freshwater ponds, which can be remote and may dry out annually, but may still harbour high biodiversity. Persistence in such habitats depends on recurrent colonisation or species survival capacity, and ponds therefore provide an ideal system to investigate dispersal and connectivity. 2. Here, we test the hypothesis that the wide distributions and invasive potential of aquatic snails is due to their ability to exploit several dispersal vectors in different landscapes. We explored the population structure of Physa acuta (recent synonyms: Haitia acuta, Physella acuta, Pulmonata: Gastropoda), an invasive aquatic snail originating from North America, but established in temporary ponds in Doñana National Park, southern Spain. In this area, snails face land barriers when attempting to colonise other suitable habitat. 3. Genetic analyses using six microsatellite loci from 271 snails in 21 sites indicated that (i) geographically and hydrologically isolated snail populations in the park were genetically similar to a large snail population in rice fields more than 15 km away; (ii) these isolated ponds showed an isolation‐by‐distance pattern. This pattern broke down, however, for those ponds visited frequently by large mammals such as cattle, deer and wild boar; (iii) snail populations were panmictic in flooded and hydrologically connected rice fields. 4. These results support the notion that aquatic snails disperse readily by direct water connections in the flooded rice fields, can be carried by waterbirds flying between the rice fields and the park and may disperse between ponds within the park by attaching to large mammals. 5. The potential for aquatic snails such as Physa acuta to exploit several dispersal vectors may contribute to their wide distribution on various continents and their success as invasive species. We suggest that the interaction between different dispersal vectors, their relation to specific habitats and consequences at different geographic scales should be considered both when attempting to control invasive freshwater species and when protecting endangered species.  相似文献   
38.
39.
Nitrogen (N) inputs to ecosystems have increased worldwide, often leading to large changes in plant community structure and reducing plant diversity. Yet, the interaction of increased N availability with other factors that determine plant community composition, are still poorly understood. Here, we test whether the impact of N addition on plant communities depends on the presence of arbuscular mycorrhizal fungi (AMF). AMF are widespread plant symbionts that facilitate growth of many plant species. We hypothesize that AM fungi reduce the negative impact of N addition on plant communities by supporting growth of species that are sensitive to N enrichment.We established experimental grassland microcosms consisting of 18 plant species. These microcosms were subjected to high and low N supply and were inoculated with AMF or remained nonmycorrhizal. Both N addition and AMF had a big impact on plant community composition, but with opposite effects. N addition induced a 2.8‐fold increase in grass biomass and reduced legume biomass. Grasses dominated the microcosms at high N supply, especially when AMF were absent. In contrast, AMF enhanced biomass of all legumes species (on average 6.8‐fold) and reduced the relative abundance of grasses. The proportion of legume biomass out of total shoot biomass at high N supply was 19% with AMF and only 3% without AMF. Our results show that responses of plant communities to N enrichment depend on AMF and that AMF can reduce the negative impact of increased N availability on plant community structure by reducing grass dominance.  相似文献   
40.
The pattern, timing and extent of the evolutionary radiation of anatomically modern birds (Neornithes) remains contentious: dramatically different timescales for this major event in vertebrate evolution have been recovered by the 'clock-like' modelling of molecular sequence data and from evidence extracted from the known fossil record. Because current synthesis would lead us to believe that fossil and nonfossil evidence conflict with regard to the neornithine timescale, especially at its base, it is high time that available data are reconciled to determine more exactly the evolutionary radiation of modern birds. In this review we highlight current understanding of the early fossil history of Neornithes in conjunction with available phylogenetic resolution for the major extant clades, as well as recent advancements in genetic methods that have constrained time estimates for major evolutionary divergences. Although the use of molecular approaches for timing the radiation of Neornithes is emphasized, the tenet of this review remains the fossil record of the major neornithine subdivisions and better-preserved taxa. Fossils allowing clear phylogenetic constraint of taxa are central to future work in the production of accurate molecular calibrations of the neornithine evolutionary timescale.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 141 , 153–177.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号