首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2011年   4篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   8篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1993年   1篇
  1987年   1篇
排序方式: 共有42条查询结果,搜索用时 281 毫秒
41.
The elastic properties of membrane bilayers are key parameters that control its deformation and can be affected by pharmacological agents. Our previous atomic force microscopy studies revealed that the macrolide antibiotic, azithromycin, leads to erosion of DPPC domains in a fluid DOPC matrix [A. Berquand, M. P. Mingeot-Leclercq, Y. F. Dufrene, Real-time imaging of drug-membrane interactions by atomic force microscopy, Biochim. Biophys. Acta 1664 (2004) 198-205.]. Since this observation could be due to an effect on DOPC cohesion, we investigated the effect of azithromycin on elastic properties of DOPC giant unilamellar vesicles (GUVs). Microcinematographic and morphometric analyses revealed that azithromycin addition enhanced lipid membranes fluctuations, leading to eventual disruption of the largest GUVs. These effects were related to change of elastic moduli of DOPC, quantified by the micropipette aspiration technique. Azithromycin decreased both the bending modulus (k(c), from 23.1+/-3.5 to 10.6+/-4.5 k(B)T) and the apparent area compressibility modulus (K(app), from 176+/-35 to 113+/-25 mN/m). These data suggested that insertion of azithromycin into the DOPC bilayer reduced the requirement level of both the energy for thermal fluctuations and the stress to stretch the bilayer. Computer modeling of azithromycin interaction with DOPC bilayer, based on minimal energy, independently predicted that azithromycin (i) inserts at the interface of phospholipid bilayers, (ii) decreases the energy of interaction between DOPC molecules, and (iii) increases the mean surface occupied by each phospholipid molecule. We conclude that azithromycin inserts into the DOPC lipid bilayer, so as to decrease its cohesion and to facilitate the merging of DPPC into the DOPC fluid matrix, as observed by atomic force microscopy. These investigations, based on three complementary approaches, provide the first biophysical evidence for the ability of an amphiphilic antibiotic to alter lipid elastic moduli. This may be an important determinant for drug: lipid interactions and cellular pharmacology.  相似文献   
42.
The advent of high-throughput sequencing technology has resulted in the ability to measure millions of single-nucleotide polymorphisms (SNPs) from thousands of individuals. Although these high-dimensional data have paved the way for better understanding of the genetic architecture of common diseases, they have also given rise to challenges in developing computational methods for learning epistatic relationships among genetic markers. We propose a new method, named cuckoo search epistasis (CSE) for identifying significant epistatic interactions in population-based association studies with a case–control design. This method combines a computationally efficient Bayesian scoring function with an evolutionary-based heuristic search algorithm, and can be efficiently applied to high-dimensional genome-wide SNP data. The experimental results from synthetic data sets show that CSE outperforms existing methods including multifactorial dimensionality reduction and Bayesian epistasis association mapping. In addition, on a real genome-wide data set related to Alzheimer''s disease, CSE identified SNPs that are consistent with previously reported results, and show the utility of CSE for application to genome-wide data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号