首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   989895篇
  免费   100990篇
  国内免费   626篇
  2018年   10469篇
  2017年   9743篇
  2016年   13841篇
  2015年   17992篇
  2014年   21092篇
  2013年   29802篇
  2012年   33620篇
  2011年   34169篇
  2010年   23312篇
  2009年   21273篇
  2008年   29860篇
  2007年   30691篇
  2006年   29002篇
  2005年   28131篇
  2004年   28121篇
  2003年   26696篇
  2002年   25725篇
  2001年   44248篇
  2000年   44256篇
  1999年   35161篇
  1998年   12361篇
  1997年   12663篇
  1996年   11895篇
  1995年   11105篇
  1994年   10820篇
  1993年   10543篇
  1992年   28569篇
  1991年   27960篇
  1990年   27317篇
  1989年   26698篇
  1988年   24848篇
  1987年   23205篇
  1986年   21498篇
  1985年   21582篇
  1984年   17821篇
  1983年   14855篇
  1982年   11109篇
  1981年   9858篇
  1980年   9348篇
  1979年   16064篇
  1978年   12511篇
  1977年   11321篇
  1976年   10357篇
  1975年   11758篇
  1974年   12553篇
  1973年   12459篇
  1972年   11112篇
  1971年   10241篇
  1970年   8687篇
  1969年   8449篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
991.
The effect of insulin on phosphatidylcholine biosynthesis in cultured rat liver cells was assessed by measuring changes in the activity of the first enzyme in the choline pathway of phosphatidylcholine biosynthesis, choline kinase (ATP: cholinephosphortransferase, EC 2.7.1.32), in the presence or absence of the hormone. Choline kinase specific activity in liver cells incubated for 18 hours in the presence of 10?7M insulin increased two-fold from 3.4 ± 0.3 nmoles phosphorylcholine formed/min/mg protein to 7.5 ± 0.6 nmoles/min/mg protein. This effect was dose dependent and reversed by the addition of actinomycin D and cycloheximide. It is concluded that the increase in specific activity is due to synthesis of new enzyme rather than activation of existing enzyme.  相似文献   
992.
To avoid negative impacts on food production, novel non-food biofuel feedstocks need to be identified and utilised. One option is to utilise marine biomass, notably fast-growing, large marine ‘plants’ such as the macroalgal kelps. This paper reports on the changing composition of Laminaria digitata throughout it growth cycle as determined by new technologies. The potential of Laminaria sp. as a feedstock for biofuel production and future biorefining possibilities was assessed through proximate and ultimate analysis, initial pyrolysis rates using thermo-gravimetric analysis (TGA), metals content and pyrolysis gas chromatography-mass spectrometry.Samples harvested in March contained the lowest proportion of carbohydrate and the highest ash and alkali metal content, whereas samples harvested in July contained the highest proportions of carbohydrate, lowest alkali metals and ash content. July was therefore considered the most suitable month for harvesting kelp biomass for thermochemical conversion to biofuels.  相似文献   
993.
994.
An oligomycin-sensitive F1F0-ATPase isolated from bovine heart mitochondria has been reconstituted into phospholipid vesicles and pumps protons. this preparation of F1F0-ATPase contains 14 different polypeptides that are resolved by polyacrylamide gel electrophoresis under denaturing conditions, and so it is more complex than bacterial and chloroplast enzymes, which have eight or nine different subunits. The 14 bovine subunits have been characterized by protein sequence analysis. They have been fractionated on polyacrylamide gels and transferred to poly(vinylidene difluoride) membranes, and N-terminal sequences have been determined in nine of them. By comparison with known sequences, eight of these have been identified as subunits beta, gamma, delta, and epsilon, which together with the alpha subunit form the F1 domain, as the b and c (or DCCD-reactive) subunits, both components of the membrane sector of the enzyme, and as the oligomycin sensitivity conferral protein (OSCP) and factor 6 (F6), both of which are required for attachment of F1 to the membrane sector. The sequence of the ninth, named subunit e, has been determined and is not related to any reported protein sequence. The N-terminal sequence of a tenth subunit, the membrane component A6L, could be determined after a mild acid treatment to remove an alpha-N-formyl group. Similar experiments with another membrane component, the a or ATPase-6 subunit, caused the protein to degrade, but the protein has been isolated from the enzyme complex and its position on gels has been unambiguously assigned. No N-terminal sequence could be derived from three other proteins. The largest of these is the alpha subunit, which previously has been shown to have pyrrolidonecarboxylic acid at the N terminus of the majority of its chains. The other two have been isolated from the enzyme complex; one of them is the membrane-associated protein, subunit d, which has an alpha-N-acetyl group, and the second, surprisingly, is the ATPase inhibitor protein. When it is isolated directly from mitochondrial membranes, the inhibitor protein has a frayed N terminus, with chains starting at residues 1, 2, and 3, but when it is isolated from the purified enzyme complex, its chains are not frayed and the N terminus is modified. Previously, the sequences at the N terminals of the alpha, beta, and delta subunits isolated from F1-ATPase had been shown to be frayed also, but in the F1F0 complex they each have unique N-terminal sequences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
995.
The influence of malate and cytochrome c on fatty acid oxidation under control and ischemic conditions was investigated. In the medium without malate, cytochrome did not make fatty acid oxidation decreased during ischemia return to normal. Oxidation in the media containing malate and cytochrome did not differ from control only when it was measured after preliminary oxidation of endogenous substrates. The ratio of palmitoyl-CoA and palmitoyl carnitine to the respiration rates at state 3 was unchanged at 60 min ischemia. Apparently, no changes in carnitine acyltransferase playing a role in oxidation of palmitoyl-CoA took place. Thus, the decrease of fatty acid oxidation at early periods of ischemia is largely caused by a reduction in the content of cytochrome c and intermediates of Krebs cycle in the mitochondria.  相似文献   
996.
Daily ingestion of iodide alone is not adequate to sustain production of the thyroid hormones, tri- and tetraiodothyronine. Proper maintenance of iodide in vivo also requires its active transport into the thyroid and its salvage from mono- and diiodotyrosine that are formed in excess during hormone biosynthesis. The enzyme iodotyrosine deiodinase responsible for this salvage is unusual in its ability to catalyze a reductive dehalogenation reaction dependent on a flavin cofactor, FMN. Initial characterization of this enzyme was limited by its membrane association, difficult purification and poor stability. The deiodinase became amenable to detailed analysis only after identification and heterologous expression of its gene. Site-directed mutagenesis recently demonstrated that cysteine residues are not necessary for enzymatic activity in contrast to precedence set by other reductive dehalogenases. Truncation of the N-terminal membrane anchor of the deiodinase has provided a soluble and stable source of enzyme sufficient for crystallographic studies. The structure of an enzyme·substrate co-crystal has become invaluable for understanding the origins of substrate selectivity and the mutations causing thyroid disease in humans.  相似文献   
997.
We have shown previously that cDNAs for the M1 and M2 subunits of ribonucleotide reductase, ornithine decarboxylase (ODC), and p5-8, a 55,000-Dalton protein, hybridize to amplified genomic sequences in a highly hydroxyurea-resistant hamster cell line. We have extended these observations to include two additional, independently isolated, hydroxyurea-resistant cell lines: SC8, a single-step hamster ovary cell line, and KH450, a multistep human myeloid leukemic cell line, have also undergone genomic amplification for sequences homologous to ODC and p5-8 cDNAs. However, neither SC8 nor KH450 contains amplified genomic sequences homologous to an M1 cDNA probe. A panel of mouse-hamster somatic cell hybrids was used to map sequences homologous to M1, M2, ODC, and 5-8 cDNAs in the hamster genome. The M2, ODC, and p5-8 cDNAs hybridized to DNA fragments that segregated with hamster chromosome 7. In contrast, M1 cDNA hybridized to DNA fragments that segregated with hamster chromosome 3. These data suggest that the genes RRM2, (M2), ODC, and p5-8, but not RRMI (M1), are linked and may have been co-amplified in the selection of the hydroxyurea-resistant hamster and human cell lines.  相似文献   
998.
It was shown in in vitro experiments that etmozin at a concentration of 100 micrograms/ml significantly suppressed (by 21%) platelet aggregation induced by ADP, but it had no effect on platelet aggregation induced by arachidonic acid. In in vivo experiments etmozin was found to cause a marked suppression of tendon collagen-induced platelet aggregation in the doses 2-5 mg/kg having antiarrhythmic activity. Under suppressed platelet aggregation induced by indomethacin, the prostaglandin biosynthesis blocker etmozin displayed no antiaggregation effect. It is suggested that etmozin effects on ADP release from platelets play the main role in the mechanism of its antiaggregation action.  相似文献   
999.
The study of the structural and functional properties of key components of polar marine ecosystems has received increased attention in order to better understand the ecological consequences of future sea temperature rise and seasonal ice retraction. Owing to this purpose, during the ATOS-Arctic cruise, held in July 2007 in the framework of the 2007–2008 International Polar Year, we studied the respiratory carbon demand of mesozooplankton as well as their contribution to the regeneration of inorganic nitrogen and phosphorus (NH4-N and PO4-P) via excretion. The studied area comprised several stations along a latitudinal gradient in the East Greenland current, plus a network of stations NW of the Svalbard islands. The specific respiratory carbon losses and phosphorus (PO4-P) excretion rates were similar or slightly higher than some reports for Arctic mesozooplankton, but the nitrogen (NH4-N) excretion rates were higher by a factor of 3 when compared with previous data sets. The mesozooplankton respiratory losses were equivalent to 23% of primary production, and at turn zooplankton contributed by excretion to more than 50% of the N and P required by phytoplankton. Although C:N, C:P and N:P metabolic atomic quotients almost coincided with the average Redfield’s stoichiometric ratios, the low C:N values when compared to previous reports suggested a predominance of protein-related metabolic substrates. The potential consequences of changes observed in the C:N, N:P and C:P metabolic ratios of mesozooplankton for Arctic marine ecosystems are discussed.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号