首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   16篇
  2023年   2篇
  2022年   6篇
  2021年   8篇
  2020年   6篇
  2019年   10篇
  2018年   9篇
  2017年   6篇
  2016年   11篇
  2015年   13篇
  2014年   11篇
  2013年   32篇
  2012年   28篇
  2011年   30篇
  2010年   17篇
  2009年   24篇
  2008年   22篇
  2007年   24篇
  2006年   18篇
  2005年   21篇
  2004年   16篇
  2003年   21篇
  2002年   16篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1981年   1篇
  1971年   1篇
排序方式: 共有376条查询结果,搜索用时 744 毫秒
11.
Li metal is a promising anode material for all‐solid‐state batteries, owing to its high specific capacity and low electrochemical potential. However, direct contact of Li metal with most solid‐state electrolytes induces severe side reactions that can lead to dendrite formation and short circuits. Moreover, Li metal is unstable when exposed to air, leading to stringent processing requirements. Herein, it is reported that the Li3PS4/Li interface in all‐solid‐state batteries can be stabilized by an air‐stable LixSiSy protection layer that is formed in situ on the surface of Li metal through a solution‐based method. Highly stable Li cycling for over 2000 h in symmetrical cells and a lifetime of over 100 cycles can be achieved for an all‐solid‐state LiCoO2/Li3PS4/Li cell. Synchrotron‐based high energy X‐ray photoelectron spectroscopy in‐depth analysis demonstrates the distribution of different components within the protection layer. The in situ formation of an electronically insulating LixSiSy protection layer with highly ionic conductivity provides an effective way to prevent Li dendrite formation in high‐energy all‐solid‐state Li metal batteries.  相似文献   
12.
13.
Human colorectal carcinoma (Caco-2) cells undergo in culture spontaneous enterocytic differentiation, characterized by polarization and appearance of the functional apical brush border membrane. To provide insights into the biology of differentiation, we have performed a comparative proteomic analysis of the plasma membranes from proliferating cells (PCs) and the apical membranes from differentiated cells (DCs). Proteins were resolved by SDS-PAGE, in-gel digested and analyzed by RP-LC and MS/MS. Alternatively, proteins were digested in solution, and tryptic peptides were labeled with isotopic tags and analyzed by 2-D LC followed by MS/MS. Among the 1125 proteins identified in both proteomes, 76 were found to be significantly increased in the membranes of DCs and 61 were increased in PCs. Majority of the proteins increased in the apical membranes were metabolic enzymes, proteins involved in the maintenance of cellular structure, transmembrane transporters, and proteins regulating vesicular transport. In contrast, majority of the proteins increased in the membranes of PCs were involved in gene expression, protein synthesis, and folding. Both groups contained many novel proteins with yet to be identified functions, which could provide potential new markers of the intestinal cells or of colorectal cancer.  相似文献   
14.
15.
The Na,K-ATPase undergoes conformational transitions during its catalytic cycle that mediate energy transduction between the phosphorylation and cation-binding sites. Structure-function studies have shown that transmembrane segments H5 and H6 in the alpha subunit of the enzyme participate in cation binding and transport. The Ca-ATPase crystal structure indicates that the H5 helix extends into the cytoplasmic ATP binding domain, finishing 4-5 A from the phosphorylation site. Here, we test whether the phosphorylation of the Na,K-ATPase leads to conformational changes in the cation-binding H5-H6 hairpin. Using as background an enzyme where all wild-type Cys in the transmembrane region were replaced, Cys were introduced in the joining loop and extracellular ends of H5 and H6. Mutated proteins were expressed in COS cells and probed with Hg(2+), [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET), and biotin-maleimide, applied to the extracellular media while placing the cells in two different media (K-medium and Na-medium). We assumed that under these treatment conditions most of the enzyme would be in one of two predominant conformations: E1 (K-medium) and E2P (Na-medium). The extent of enzyme inactivation by Hg(2+) or MTSET treatment was dependent on the targeted position; i.e., proteins carrying Cys in the outermost positions were more affected by treatment. Moreover, in the case of proteins carrying Cys at positions 785, 787, and 797, driving the enzyme to phosphorylated conformations (Na-media) led to a larger inactivation. Similarly, biotinylation of introduced Cys was also influenced by the enzyme conformation, with a larger extent of modification after treatment of cells in the Na-medium (E2P form). These results can be explained by the enzyme phosphorylation driving the outward movement of the H5 helix. Thus, they provide experimental evidence for a structure-function mechanism where, via H5, enzyme phosphorylation leads to a conformational change at the cation-binding site and the consequent cation translocation.  相似文献   
16.
The binding of substrates and inhibitors to wild-type Proteus vulgaris tryptophan indole-lyase and to wild type and Y71F Citrobacter freundii tyrosine phenol-lyase was investigated in the crystalline state by polarized absorption microspectrophotometry. Oxindolyl-lalanine binds to tryptophan indole-lyase crystals to accumulate predominantly a stable quinonoid intermediate absorbing at 502 nm with a dissociation constant of 35 microm, approximately 10-fold higher than that in solution. l-Trp or l-Ser react with tryptophan indole-lyase crystals to give, as in solution, a mixture of external aldimine and quinonoid intermediates and gem-diamine and external aldimine intermediates, respectively. Different from previous solution studies (Phillips, R. S., Sundararju, B., & Faleev, N. G. (2000) J. Am. Chem. Soc. 122, 1008-1114), the reaction of benzimidazole and l-Trp or l-Ser with tryptophan indole-lyase crystals does not result in the formation of an alpha-aminoacrylate intermediate, suggesting that the crystal lattice might prevent a ligand-induced conformational change associated with this catalytic step. Wild-type tyrosine phenol-lyase crystals bind l-Met and l-Phe to form mixtures of external aldimine and quinonoid intermediates as in solution. A stable quinonoid intermediate with lambda(max) at 502 nm is accumulated in the reaction of crystals of Y71F tyrosine phenol-lyase, an inactive mutant, with 3-F-l-Tyr with a dissociation constant of 1 mm, approximately 10-fold higher than that in solution. The stability exhibited by the quinonoid intermediates formed both by wild-type tryptophan indole-lyase and by wild type and Y71F tyrosine phenol-lyase crystals demonstrates that they are suitable for structural determination by x-ray crystallography, thus allowing the elucidation of a key species of pyridoxal 5'-phosphate-dependent enzyme catalysis.  相似文献   
17.
NF-kappaB regulates the expression of the human complement receptor 2 gene   总被引:1,自引:0,他引:1  
CR2 is a key regulator of the B cell response to Ag. Here we show that NF-kappaB enhances the expression of the human CR2 gene. Promoter truncation, deletion, and mutagenesis studies indicated a functional role for a consensus NF-kappaB promoter element, as well as a heterogeneous nuclear ribonucleoprotein D element and an overlapping X box/E box. By supershift analysis, the first two elements bound NF-kappaB p50 and p65 and heterogeneous nuclear ribonucleoprotein RNP D, respectively. The X box/E box bound regulatory factor X5 and, surprisingly, NF-kappaB p50 and p65. Overexpression of NF-kappaB p50 enhanced the activity of the CR2 promoter in B cell lines and primary B cells, suggesting a direct role for NF-kappaB in regulating promoter activity. Importantly, mutation of the NF-kappaB element or the X box/E box rendered the promoter unresponsive to NF-kappaB p50. Using chromatin immunoprecipitation in live B cell lines and primary B cells, we found that NF-kappaB proteins p50, p65, and c-Rel bound to the genomic promoter at two locations that overlap with the consensus NF-kappaB element or the X box/E box. Finally, stimuli that activate NF-kappaB enhanced the activity of the CR2 promoter, and LPS rapidly increased the number of CR2 proteins on the surface of primary B cells. We propose that the NF-kappaB signaling pathway enhances the expression of the CR2 gene, as a result of NF-kappaB proteins binding to two CR2 promoter elements. Thus, at the onset of an infection, LPS could sensitize the B cell to Ag by enhancing the level of CR2-costimulatory molecules on the cell surface.  相似文献   
18.
Heat-induced formation of 8-oxoguanine was demonstrated in DNA solutions in 10–3 M phosphate buffer, pH 6.8, by enzyme-linked immunosorbent assays using monoclonal antibodies against 8-oxoguanine. A radiation-chemical yield of 3.7 × 10–2 µmol J–1 for 8-oxoguanine production in DNA upon γ-irradiation was used as an adequate standard for quantitation of 8-oxoguanine in whole DNA. The initial yield of heat-induced 8-oxoguanine exhibits first order kinetics. The rate constants for 8-oxoguanine formation were determined at elevated temperatures; the activation energy was found to be 27 ± 2 kcal/mol. Extrapolation to 37°C gave a value of k37 = 4.7 × 10–10 s–1. Heat-induced 8-oxoguanine formation and depurination of guanine and adenine show similarities of the processes, which implies that heat-mediated generation of reactive oxygen species (ROS) should occur. Heat-induced production of H2O2 in phosphate buffer was shown. The sequence of reactions of thermally mediated ROS formation have been established: activation of dissolved oxygen to the singlet state, generation of superoxide radicals and their dismutation to H2O2. Gas saturation (O2, N2 and Ar), D2O, scavengers of 1O2, O2–• and OH radicals and metal chelators influenced heat-induced 8-oxoguanine formation as they affected thermal ROS generation. These findings imply that heat acts via ROS attack leading to oxidative damage to DNA.  相似文献   
19.
We discovered Zeocin™ is an effective antibiotic against Enterobacter agglomerans and Klebsiella pneumoniae strains isolated from the walnut husk fly (Rhagoletis completa Cresson: Family Tephritidae) and that bleomycin resistance can be used as a selective marker in transforming plasmids. We transformed Ent. agglomerans and K. pneumoniae strains originally isolated from their close association with R. completa gut to produce enhanced green fluorescent protein, a variant of green fluorescent protein in the first demonstration of genetic transformation of internal extracellular bacteria isolated from a tephritid pest. We report methods for plasmid-mediated transformation of these bacteria, the expression of fluorescent marker protein from the transforming plasmids, and the stability of the transforming plasmid in the bacteria. We also discuss applications of this technology in the study of pest biology and control implementation. Received: 5 November 1999 / Accepted: 15 December 1999  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号