首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1177篇
  免费   133篇
  2022年   7篇
  2021年   23篇
  2020年   12篇
  2019年   11篇
  2018年   15篇
  2017年   22篇
  2016年   32篇
  2015年   37篇
  2014年   46篇
  2013年   59篇
  2012年   68篇
  2011年   78篇
  2010年   40篇
  2009年   39篇
  2008年   52篇
  2007年   56篇
  2006年   43篇
  2005年   50篇
  2004年   39篇
  2003年   42篇
  2002年   39篇
  2001年   42篇
  2000年   46篇
  1999年   36篇
  1998年   14篇
  1997年   11篇
  1996年   12篇
  1995年   11篇
  1994年   9篇
  1992年   19篇
  1991年   23篇
  1990年   27篇
  1989年   10篇
  1988年   13篇
  1987年   15篇
  1986年   12篇
  1985年   12篇
  1984年   7篇
  1983年   12篇
  1982年   9篇
  1980年   7篇
  1979年   12篇
  1978年   7篇
  1977年   11篇
  1975年   13篇
  1974年   6篇
  1973年   10篇
  1972年   12篇
  1971年   13篇
  1970年   12篇
排序方式: 共有1310条查询结果,搜索用时 187 毫秒
991.
We previously described the NOD.c3c4 mouse, which is protected from type 1 diabetes (T1D) because of protective alleles at multiple insulin-dependent diabetes (Idd) genes, but develops autoimmune biliary disease (ABD) resembling primary biliary cirrhosis (PBC). In this paper, we characterize the NOD.ABD strain, which is genetically related to the NOD.c3c4 strain but develops both ABD and T1D. Histologically, NOD.ABD biliary disease is indistinguishable from that in NOD.c3c4 mice. The frequency of effector memory (CD44(+)CD62L(-)) and central memory (CD44(+)CD62L(+)) CD8 T cells is significantly increased in the intrahepatic lymphocyte fraction of NOD.ABD mice, and NOD.ABD CD8 T cells produce more IFN-γ and TNF-α, compared with controls. NOD.ABD splenocytes can transfer ABD and T1D to NOD.c3c4 scid mice, but only T1D to NOD scid mice, suggesting that the genetic origin of the target organ and/or its innate immune cells is critical to disease pathogenesis. The disease transfer model, importantly, shows that biliary duct damage (characteristic of PBC) and inflammation precede biliary epithelial cell proliferation. Unlike T1D where both CD4 and CD8 T cells are required for disease transfer, purified NOD.ABD CD8 T cells can transfer liver inflammation into NOD.c3c4 scid recipients, and disease transfer is ameliorated by cotransferring T regulatory cells. Unlike NOD.c3c4 mice, NOD.ABD mice do not develop anti-nuclear or anti-Smith autoantibodies; however, NOD.ABD mice do develop the antipyruvate dehydrogenase Abs typical of human PBC. The NOD.ABD strain is a model of immune dysregulation affecting two organ systems, most likely by mechanisms that do not completely coincide.  相似文献   
992.
Key aspects of lysosomal function are affected by the ionic content of the lysosomal lumen and, therefore, by the ion permeability in the lysosomal membrane. Such functions include regulation of lysosomal acidification, a critical process in delivery and activation of the lysosomal enzymes, release of metals from lysosomes into the cytoplasm and the Ca2+-dependent component of membrane fusion events in the endocytic pathway. While the basic mechanisms of lysosomal acidification have been largely defined, the lysosomal metal transport system is not well understood. TRPML1 is a lysosomal ion channel whose malfunction is implicated in the lysosomal storage disease Mucolipidosis Type IV. Recent evidence suggests that TRPML1 is involved in Fe2+, Ca2+ and Zn2+ transport across the lysosomal membrane, ascribing novel physiological roles to this ion channel, and perhaps to its relatives TRPML2 and TRPML3 and illuminating poorly understood aspects of lysosomal function. Further, alterations in metal transport by the TRPMLs due to mutations or environmental factors may contribute to their role in the disease phenotype and cell death.  相似文献   
993.
994.
There is interest in discovering root traits associated with acclimation to nutrient stress. Large root systems, such as in adult maize, have proven difficult to be phenotyped comprehensively and over time, causing target traits to be missed. These challenges were overcome here using aeroponics, a system where roots grow in the air misted with a nutrient solution. Applying an agriculturally relevant degree of low nitrogen (LN) stress, 30-day-old plants responded by increasing lengths of individual crown roots (CRs) by 63%, compensated by a 40% decline in CR number. LN increased the CR elongation rate rather than lengthening the duration of CR growth. Only younger CR were significantly responsive to LN stress, a novel finding. LN shifted the root system architectural balance, increasing the lateral root (LR)-to-CR ratio, adding ~70 m to LR length. LN caused a dramatic increase in second-order LR density, not previously reported in adult maize. Despite the near-uniform aeroponics environment, LN induced increased variation in the relative lengths of opposing LR pairs. Large-scale analysis of root hairs (RHs) showed that LN decreased RH length and density. Time-course experiments suggested the RH responses may be indirect consequences of decreased biomass/demand under LN. These results identify novel root traits for genetic dissection.  相似文献   
995.
Idiopathic chronic neutropenia (ICN) describes a heterogeneous group of hematologic diseases characterized by low circulating neutrophil levels often associated with recurrent fevers, chronic mucosal inflammation, and severe systemic infections. The severity and risk of complications, including serious infections, are inversely proportional to the absolute neutrophil count (ANC), with the greatest problems occurring in patients with an ANC of less than 0.5 × 109/L. This case report describes a 64-year-old female with longstanding rheumatoid arthritis who subsequently developed ICN with frequent episodes of sepsis requiring hospitalization and prolonged courses of antibiotics over a 4-year period. She was treated with granulocyte colony stimulating factors (G-CSF) but had a delayed, highly variable, and volatile response. She was enrolled in a clinical trial evaluating the oral investigational agent ezatiostat. Ezatiostat, a glutathione S-transferase P1-1 inhibitor, activates Jun kinase, promoting the growth and maturation of hematopoietic progenitor stem cells. She responded by the end of the first month of treatment with stabilization of her ANC (despite tapering and then stopping G-CSF), clearing of fever, and healing of areas of infection. This ANC response to ezatiostat treatment has now been sustained for over 8 months and continues. These results suggest potential roles for ezatiostat in the treatment of patients with ICN who are not responsive to G-CSF, as an oral therapy alternative, or as an adjunct to G-CSF, and further studies are warranted.  相似文献   
996.
In response to global habitat loss, many governmental and non‐governmental organizations have implemented land acquisition programs to protect critical habitats permanently for priority species. The ability of these protected areas to meet future management objectives may be compromised if the effects of climate change are not considered in acquisition decisions. Unfortunately, the effects of climate change on ecological systems are complex and plagued by uncertainty, making it difficult for organizations to prioritize research needs to improve decision‐making. Herein, we demonstrate the use of qualitative value of information analysis to identify and prioritize which sources of uncertainty should be reduced to improve land acquisition decisions to protect migratory birds in the face of climate change. The qualitative value of information analysis process involves four steps: (i) articulating alternative hypotheses; (ii) determining the magnitude of uncertainty regarding each hypothesis; (iii) evaluating the relevance of each hypothesis to acquisition decision‐making; and (iv) assessing the feasibility of reducing the uncertainty surrounding each hypothesis through research and monitoring. We demonstrate this approach using the objectives of 3 U.S. federal land acquisition programs that focus on migratory bird management. We used a comprehensive literature review, expert elicitation, and professional judgement to evaluate 11 hypotheses about the effect of climate change on migratory birds. Based on our results, we provide a list of priorities for future research and monitoring to reduce uncertainty and improve land acquisition decisions for the programs considered in our case study. Reducing uncertainty about how climate change will influence the spatial distribution of priority species and biotic homogenization were identified as the highest priorities for future research due to both the value of this information for improving land acquisition decisions and the feasibility of reducing uncertainty through research and monitoring. Research on how changes in precipitation patterns and winter severity will influence migratory bird abundance is also expected to benefit land acquisition decisions. By contrast, hypotheses about phenology and migration distance were identified as low priorities for research. By providing a rigorous and transparent approach to prioritizing research, we demonstrate that qualitative value of information is a valuable tool for prioritizing research and improving management decisions in other complex, high‐uncertainty cases where traditional quantitative value of information analysis is not possible. Given the inherent complexity of ecological systems under climate change, and the difficulty of identifying management‐relevant research priorities, we expect this approach to have wide applications within the field of natural resource management.  相似文献   
997.
998.
The manufacturing of bispecific antibodies can be challenging for a variety of reasons. For example, protein expression problems, stability issues, or the use of non-standard approaches for manufacturing can result in poor yield or poor facility fit. In this paper, we demonstrate the use of standard antibody platforms for large-scale manufacturing of bispecific IgG1 by controlled Fab-arm exchange. Two parental antibodies that each contain a single matched point mutation in the CH3 region were separately expressed in Chinese hamster ovary cells and manufactured at 1000 L scale using a platform fed-batch and purification process that was designed for standard antibody production. The bispecific antibody was generated by mixing the two parental molecules under controlled reducing conditions, resulting in efficient Fab-arm exchange of >95% at kg scale. The reductant was removed via diafiltration, resulting in spontaneous reoxidation of interchain disulfide bonds. Aside from the bispecific nature of the molecule, extensive characterization demonstrated that the IgG1 structural integrity was maintained, including function and stability. These results demonstrate the suitability of this bispecific IgG1 format for commercial-scale manufacturing using standard antibody manufacturing techniques.  相似文献   
999.

Background

Ruxolitinib, a Janus kinase 1 and 2 inhibitor, demonstrated improvements in spleen volume, symptoms, and survival over placebo and best available therapy in intermediate-2 or high-risk myelofibrosis patients with baseline platelet counts ≥100?×?109/L in phase III studies. The most common adverse events were dose-dependent anemia and thrombocytopenia, which were anticipated because thrombopoietin and erythropoietin signal through JAK2. These events were manageable, rarely leading to treatment discontinuation. Because approximately one-quarter of MF patients have platelet counts <100?×?109/L consequent to their disease, ruxolitinib was evaluated in this subset of patients using lower initial doses. Interim results of a phase II study of ruxolitinib in myelofibrosis patients with baseline platelet counts of 50-100?×?109/L are reported.

Methods

Ruxolitinib was initiated at a dose of 5 mg twice daily (BID), and doses could be increased by 5 mg once daily every 4 weeks to 10 mg BID if platelet counts remained adequate. Additional dosage increases required evidence of suboptimal efficacy. Assessments included measurement of spleen volume by MRI, MF symptoms by MF Symptom Assessment Form v2.0 Total Symptom Score [TSS]), Patient Global Impression of Change (PGIC); EORTC QLQ-C30, and safety/tolerability.

Results

By week 24, 62% of patients achieved stable doses ≥10 mg BID. Median reductions in spleen volume and TSS were 24.2% and 43.8%, respectively. Thrombocytopenia necessitating dose reductions and dose interruptions occurred in 12 and 8 patients, respectively, and occurred mainly in patients with baseline platelet counts ≤75?×?109/L. Seven patients experienced platelet count increases ≥15?×?109/L. Mean hemoglobin levels remained stable over the treatment period. Two patients discontinued for adverse events: 1 for grade 4 retroperitoneal hemorrhage secondary to multiple and suspected pre-existing renal artery aneurysms and 1 for grade 4 thrombocytopenia.

Conclusions

Results suggest that a low starting dose of ruxolitinib with escalation to 10 mg BID may be appropriate in myelofibrosis patients with low platelet counts.

Trial registration

ClinicalTrials.gov:NCT01348490.
  相似文献   
1000.
CCN2 (connective tissue growth factor (CTGF/CCN2)) is a matricellular protein that utilizes integrins to regulate cell proliferation, migration and survival. The loss of CCN2 leads to perinatal lethality resulting from a severe chondrodysplasia. Upon closer inspection of Ccn2 mutant mice, we observed defects in extracellular matrix (ECM) organization and hypothesized that the severe chondrodysplasia caused by loss of CCN2 might be associated with defective chondrocyte survival. Ccn2 mutant growth plate chondrocytes exhibited enlarged endoplasmic reticula (ER), suggesting cellular stress. Immunofluorescence analysis confirmed elevated stress in Ccn2 mutants, with reduced stress observed in Ccn2 overexpressing transgenic mice. In vitro studies revealed that Ccn2 is a stress responsive gene in chondrocytes. The elevated stress observed in Ccn2−/− chondrocytes is direct and mediated in part through integrin α5. The expression of the survival marker NFκB and components of the autophagy pathway were decreased in Ccn2 mutant growth plates, suggesting that CCN2 may be involved in mediating chondrocyte survival. These data demonstrate that absence of a matricellular protein can result in increased cellular stress and highlight a novel protective role for CCN2 in chondrocyte survival. The severe chondrodysplasia caused by the loss of CCN2 may be due to increased chondrocyte stress and defective activation of autophagy pathways, leading to decreased cellular survival. These effects may be mediated through nuclear factor κB (NFκB) as part of a CCN2/integrin/NFκB signaling cascade.

Electronic supplementary material

The online version of this article (doi:10.1007/s12079-013-0201-y) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号