首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1780篇
  免费   130篇
  2022年   7篇
  2021年   17篇
  2020年   15篇
  2019年   16篇
  2018年   19篇
  2017年   17篇
  2016年   41篇
  2015年   62篇
  2014年   91篇
  2013年   109篇
  2012年   149篇
  2011年   197篇
  2010年   131篇
  2009年   100篇
  2008年   108篇
  2007年   90篇
  2006年   79篇
  2005年   68篇
  2004年   84篇
  2003年   80篇
  2002年   74篇
  2001年   11篇
  2000年   11篇
  1999年   16篇
  1998年   33篇
  1997年   11篇
  1996年   18篇
  1995年   16篇
  1994年   17篇
  1993年   12篇
  1992年   12篇
  1991年   17篇
  1990年   15篇
  1989年   9篇
  1988年   14篇
  1987年   9篇
  1985年   13篇
  1984年   15篇
  1983年   10篇
  1982年   8篇
  1981年   9篇
  1980年   8篇
  1979年   6篇
  1978年   7篇
  1976年   9篇
  1975年   5篇
  1974年   6篇
  1973年   5篇
  1972年   6篇
  1971年   4篇
排序方式: 共有1910条查询结果,搜索用时 345 毫秒
41.
42.
Specific receptor-induced signal transduction mechanisms for the endothelin-2 isoform (ET-2), a potent vasoconstrictor of vascular smooth muscle, were examined in Swiss 3T3 cells. Half-maximal binding (EC50) and maximal, saturable binding (Bmax) were estimated from Scatchard analyses and were found to be 24.2 ± 3.3 pM and 56500 ± 1700 sites/cells, respectively. A saturating concentration of ET-2 (100 nM) increased intracellular free calcium (measured by Fura-2 fluorescence) from a resting level of 100 nM to a peak level of 600–800 nM. The initial increase in intracellular free calcium was transitory and was followed by a smaller maintained elevation (250 nM). In the absence of extracellular calcium, ET-2 induced a transitory response equal in size to the peak in the presence of extracellular calcium, but the maintained response was absent. ET-2 increased intracellular free calcium in a concentration-dependent manner with an EC50 of 1 nM. In calcium free solution (2 mM EGTA), ET-2 increased the efflux of 45Ca from cells loaded to isotopic equilibrium (3 h) with 45Ca. The intracellular second messenger, IP3, also increased the calcium efflux from saponin permeabilized 3T3 cells loaded with 45Ca (pCa 6) in the presence of MgATP. In the presence of extracellular calcium, ET-2 significantly increased calcium uptake into 3T3 cells by 92 ± 36.6 pmoles/million cells/2 min (n = 8). It is suggested that ET-2 binds to specific, high affinity receptors in 3T3 cells and that this receptor interaction increases the intracellular free calcium by IP3-induced mobilization of calcium from cellular stores and by increasing influx of extracellular calcium.  相似文献   
43.

Soft tissue mechanical characterisation is important in many areas of medical research. Examples span from surgery training, device design and testing, sudden injury and disease diagnosis. The liver is of particular interest, as it is the most commonly injured organ in frontal and side motor vehicle crashes, and also assessed for inflammation and fibrosis in chronic liver diseases. Hence, an extensive rheological characterisation of liver tissue would contribute to advancements in these areas, which are dependent upon underlying biomechanical models. The aim of this paper is to define a liver constitutive equation that is able to characterise the nonlinear viscoelastic behaviour of liver tissue under a range of deformations and frequencies. The tissue response to large amplitude oscillatory shear (1–50%) under varying preloads (1–20%) and frequencies (0.5–2 Hz) is modelled using viscoelastic-adapted forms of the Mooney–Rivlin, Ogden and exponential models. These models are fit to the data using classical or modified objective norms. The results show that all three models are suitable for capturing the initial nonlinear regime, with the latter two being capable of capturing, simultaneously, the whole deformation range tested. The work presented here provides a comprehensive analysis across several material models and norms, leading to an identifiable constitutive equation that describes the nonlinear viscoelastic behaviour of the liver.

  相似文献   
44.
45.
Abstract

Acetyl salicylic acid (aspirin) is one of the most widely used drugs in the world. Various plasma concentrations of aspirin and its predominant metabolite, salicylic acid, are required for its antiarthritic (1.5–2.5 mM), anti-inflammatory (0.5–5.0 mM) or antiplatelet (0.18–0.36 mM) actions. A recent study demonstrated the inhibitory effects of both aspirin and salicylic acid on oxidative phosphorylation and ATP synthesis in isolated rat cardiac mitochondria in a dose-dependent manner (0–10 mM concentration range). In this context, the present study was conducted to determine the effects of salicylic acid on inosine efflux (a potential biomarker of acute cardiac ischaemia) as well as cardiac contractile function in the isolated mouse heart following 20 min of zero-flow global ischaemia. Inosine efflux was found at significantly higher concentrations in ischaemic hearts perfused with Krebs buffer fortified with 1.0 mM salicylic acid compared with those without salicylic acid (12575±3319 vs. 1437±348 ng ml?1 min?1, mean±SEM, n=6 per group, p<0.01). These results indicate that 1.0 mM salicylic acid potentiates 8.8-fold ATP nucleotide purine catabolism into its metabolites (e.g. inosine, hypoxanthine). Salicylic acid (0.1 or 1.0 mM) did not appreciably inhibit purine nucleoside phosphorylase (the enzyme converts inosine to hypoxanthine) suggesting the augmented inosine efflux was due to the salicylic acid effect on upstream elements of cellular respiration. Whereas post-ischaemic cardiac function was further depressed by 1.0 mM salicylic acid, perfusion with 0.1 mM salicylic acid led to a remarkable functional improvement despite moderately increased inosine efflux (2.7-fold). We conclude that inosine is a sensitive biomarker for detecting cardiac ischaemia and salicylic acid-induced effects on cellular respiration. However, the inosine efflux level appears to be a poor predictor of the individual post-ischaemic cardiac functional recovery in this ex vivo model.  相似文献   
46.
Humans have indirectly influenced species at lower trophic levels by driving losses of apex consumers. Furthermore, humans have indirectly influenced species at higher trophic levels by driving losses of primary producers. Beyond these broad classes of apex consumers and primary producers, it remains challenging to identify minimum subsets of species that are particularly important for maintaining ecosystem structure and functioning. Here we use a novel method at the intersection of control theory and network theory to identify a minimum set of driver node species upon which ecosystem structure strongly depends. Specifically, humans could unintentionally completely restructure ecosystems (i.e., change species abundances from any initial values to any final values, including zero) by altering the abundances of these few critical driver node species. We then quantify the proportion of these driver nodes that are influenced by humans, top predators, and primary producers in several marine food webs. We find that humans could unintentionally completely restructure marine food webs while only directly influencing less than one in four species. Additionally, humans directly influence: (1) most or all of the species necessary to completely restructure each network, (2) more driver nodes than top predators, and at least as many driver nodes as primary producers, and (3) an increasing proportion of driver nodes over time in the Adriatic Sea. We conclude that humans have potentially huge impacts on marine ecosystems while directly influencing only the relatively small subset of species that are currently fished. It may be possible to reduce unintentional and undesirable cascading human influences by decreasing human impacts on driver node species in these and other food webs.  相似文献   
47.
48.
WRN exonuclease is involved in resolving DNA damage that occurs either during DNA replication or following exposure to endogenous or exogenous genotoxins. It is likely to play a role in preventing accumulation of recombinogenic intermediates that would otherwise accumulate at transiently stalled replication forks, consistent with a hyper-recombinant phenotype of cells lacking WRN. In humans, the exonuclease domain comprises an N-terminal portion of a much larger protein that also possesses helicase activity, together with additional sites important for DNA and protein interaction. By contrast, in Drosophila, the exonuclease activity of WRN (DmWRNexo) is encoded by a distinct genetic locus from the presumptive helicase, allowing biochemical (and genetic) dissection of the role of the exonuclease activity in genome stability mechanisms. Here, we demonstrate a fluorescent method to determine WRN exonuclease activity using purified recombinant DmWRNexo and end-labeled fluorescent oligonucleotides. This system allows greater reproducibility than radioactive assays as the substrate oligonucleotides remain stable for months, and provides a safer and relatively rapid method for detailed analysis of nuclease activity, permitting determination of nuclease polarity, processivity, and substrate preferences.  相似文献   
49.
Rhizobium leguminosarum bv. trifolii strain TA1 is an aerobic, motile, Gram-negative, non-spore-forming rod that is an effective nitrogen fixing microsymbiont on the perennial clovers originating from Europe and the Mediterranean basin. TA1 however is ineffective with many annual and perennial clovers originating from Africa and America. Here we describe the features of R. leguminosarum bv. trifolii strain TA1, together with genome sequence information and annotation. The 8,618,824 bp high-quality-draft genome is arranged in a 6 scaffold of 32 contigs, contains 8,493 protein-coding genes and 83 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   
50.
Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M. truncatula and other annual species such as M. tornata and M. littoralis and is also highly effective with the perennial M. sativa (alfalfa or lucerne). In common with other characterized E. meliloti strains, WSM1022 will nodulate but fixes poorly with M. polymorpha and M. sphaerocarpos and does not nodulate M. murex. Here we describe the features of E. meliloti WSM1022, together with genome sequence information and its annotation. The 6,649,661 bp high-quality-draft genome is arranged into 121 scaffolds of 125 contigs containing 6,323 protein-coding genes and 75 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号