首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3392篇
  免费   367篇
  国内免费   1篇
  2022年   23篇
  2021年   45篇
  2020年   34篇
  2019年   43篇
  2018年   50篇
  2017年   40篇
  2016年   82篇
  2015年   113篇
  2014年   146篇
  2013年   153篇
  2012年   212篇
  2011年   205篇
  2010年   145篇
  2009年   137篇
  2008年   216篇
  2007年   190篇
  2006年   179篇
  2005年   180篇
  2004年   162篇
  2003年   172篇
  2002年   155篇
  2001年   45篇
  2000年   45篇
  1999年   53篇
  1998年   44篇
  1997年   37篇
  1996年   35篇
  1995年   26篇
  1994年   24篇
  1993年   29篇
  1992年   36篇
  1991年   30篇
  1990年   35篇
  1989年   19篇
  1988年   25篇
  1987年   31篇
  1986年   31篇
  1985年   35篇
  1984年   39篇
  1983年   31篇
  1982年   40篇
  1981年   39篇
  1980年   46篇
  1979年   33篇
  1978年   23篇
  1976年   21篇
  1975年   17篇
  1974年   20篇
  1973年   23篇
  1970年   15篇
排序方式: 共有3760条查询结果,搜索用时 46 毫秒
991.
The growth of IQ among Estonian schoolchildren from ages 7 to 19   总被引:2,自引:0,他引:2  
The Standard Progressive Matrices test was standardized in Estonia on a representative sample of 4874 schoolchildren aged from 7 to 19 years. When the IQ of Estonian children was expressed in relation to British and Icelandic norms, both demonstrated a similar sigmoid relationship. The youngest Estonian group scored higher than the British and Icelandic norms: after first grade, the score fell below 100 and remained lower until age 12, and after that age it increased above the mean level of these two comparison countries. The difference between the junior school children and the secondary school children may be due to schooling, sampling error or different trajectories of intellectual maturation in different populations. Systematic differences in the growth pattern suggest that the development of intellectual capacities proceeds at different rates and the maturation process can take longer in some populations than in others.  相似文献   
992.
Low-level endotoxemia has been identified as a powerful risk factor for atherosclerosis. However, little is known about the mechanisms that regulate endotoxin responsiveness in vascular cells. We conducted experiments to compare the relative responses of human coronary artery endothelial cells (HCAEC) and smooth muscle cells (HCASMC) to very low levels of endotoxin, and to elucidate the mechanisms that regulate endotoxin responsiveness in vascular cells. Endotoxin (10-fold higher in magnitude at >10-fold lower threshold concentrations (10-30 pg/ml) compared with HCAEC. This remarkable sensitivity of HCASMC to very low endotoxin concentrations, comparable to that found in circulating monocytes, was not due to differential expression of TLR4, which was detected in HCAEC, HCASMC, and intact coronary arteries. Surprisingly, membrane-bound CD14 was detected in seven different lines of HCASMC, conferring responsiveness to endotoxin and to lipoteichoic acid, a product of Gram-positive bacteria, in these cells. These results suggest that the low levels of endotoxin associated with increased risk for atherosclerosis are sufficient to produce inflammatory responses in coronary artery cells. Because CD14 recognizes a diverse array of inflammatory mediators and functions as a pattern recognition molecule in inflammatory cells, expression of membrane-bound CD14 in HCASMC implies a potentially broader role for these cells in transducing innate immune responses in the vasculature.  相似文献   
993.
Mutations in the G-CSF receptor (G-CSFR) in patients with severe congenital neutropenia (SCN) are postulated to contribute to transformation to acute myelogenous leukemia (AML). These mutations result in defective receptor internalization and sustained cellular activation, suggesting a loss of negative signaling by the G-CSFR. In this paper we investigated the roles of SHIP and cytokine-inducible Src homology 2 protein (CIS) in down-modulating G-CSFR signals and demonstrate that loss of their recruitment as a consequence of receptor mutations leads to aberrant signaling. We show that SHIP binds to phosphopeptides corresponding to Tyr744 and Tyr764 in the G-CSFR and that Tyr764 is required for in vivo phosphorylation of SHIP and the formation of SHIP/Shc complexes. Cells expressing a G-CSFR form lacking Tyr764 exhibited hypersensitivity to G-CSF and enhanced proliferation, but to a lesser degree than observed with the most common mutant G-CSFR form in patients with SCN/AML, prompting us to investigate whether suppressor of cytokine signaling proteins also down-modulate G-CSFR signals. G-CSF was found to induce the expression of CIS and of CIS bound to phosphopeptides corresponding to Tyr729 and Tyr744 of the G-CSFR. The expression of CIS was prolonged in cells with the SCN/AML mutant G-CSFR lacking Tyr729 and Tyr744, which also correlated with increased G-CSFR expression. These findings suggest that SHIP and CIS interact with distal phosphotyrosine residues in the G-CSFR to negatively regulate G-CSFR signaling by limiting proliferation and modulating surface expression of the G-CSFR, respectively. Novel therapeutic approaches targeting inhibitory pathways that limit G-CSFR signaling may have promise in the treatment of patients with SCN/AML.  相似文献   
994.
Hyperhomocysteinemia in humans is associated with genetic variants of several enzymes of folate and one-carbon metabolism and deficiencies of folate and vitamins B12 and B6. In each case, hyperhomocysteinemia might be caused by diminished folate-dependent homocysteine remethylation, but this has not been confirmed in vivo. Because published stable isotopic tracer approaches cannot distinguish folate-dependent from folate-independent remethylation, we developed a dual-tracer procedure in which a [U-13C5]-methionine tracer is used in conjunction with a [3-13C]serine tracer to simultaneously measure rates of total and folate-dependent homocysteine remethylation. In young female subjects, plasma [U-13C4]homocysteine enrichment, a surrogate measure of intracellular [U-13C5]methionine enrichment, reached approximately 90% of the plasma [U-13C5]methionine enrichment. Methionine-methyl and -carboxyl group fluxes were in the range of previous reports (approximately 25 and approximately 17 micromol.kg(-1).h(-1), respectively). However, the rate of overall homocysteine remethylation (approximately 8 micromol.kg(-1).h(-1)) was twice that of previous reports, which suggests a larger role for homocysteine remethylation in methionine metabolism than previously thought. By use of estimates of intracellular [3-13C]serine enrichment based on a conservative correction of plasma [3-13C]serine enrichment, serine was calculated to contribute approximately 100% of the methyl groups used for total body homocysteine remethylation under the conditions of this protocol. This contribution represented only a small fraction (approximately 2.8%) of total serine flux. Our dual-tracer procedure is well suited to measure the effects of nutrient deficiencies, genetic polymorphisms, and other metabolic perturbations on homocysteine synthesis and total and folate-dependent homocysteine remethylation.  相似文献   
995.
Increased expression of protease-activated receptor 1 (PAR1), a G protein-coupled receptor for thrombin, has previously been correlated with breast carcinoma cell invasion. PAR1 is irreversibly proteolytically activated, internalized, and sorted directly to lysosomes, a critical process for the termination of signaling. We determined that activated PAR1 trafficking is severely altered in metastatic breast carcinoma cells but not in nonmetastatic or normal breast epithelial cells. Consequently, the proteolytically activated receptor is not sorted to lysosomes and degraded. Altered trafficking of proteolytically activated PAR1 caused sustained activation of phosphoinositide hydrolysis and extracellular signal-regulated kinase signaling, even after thrombin withdrawal, and enhanced cellular invasion. Thus, our results reveal that a novel alteration in trafficking of activated PAR1 causes persistent signaling and, in addition to other processes and proteins, contributes to breast carcinoma cell invasion.  相似文献   
996.
The albino mouse was already known in ancient times and was apparently selectively bred in Egypt, China, and Japan. Thus, it is not surprising that the c or albino locus (now the Tyr locus) was among the first used to demonstrate Mendelian inheritance in mammals at the dawn of the past century. This locus is now known to encode tyrosinase, the rate-limiting enzyme in the production of melanin pigment, and the molecular basis of the albino (Tyr c ) mutation is known. Here we describe the congenic series of Tyr-locus alleles, from wild type to null (albino). We compare eye and skin pigmentation phenotypes and the genetic lesions that cause each. We suggest that this panel of congenic mutants contains rich, untapped resources for the study of many questions of basic cell biological interest.  相似文献   
997.
DNA methylation is critical for normal genomic structure and function and is dependent on adequate folate status. A polymorphism (677C-->T) in a key folate enzyme, methylenetetrahydrofolate reductase (MTHFR), may impair DNA methylation when folate intake is inadequate and may increase the risk of reproductive abnormalities. The present study was designed to evaluate the effect of the MTHFR 677C-->T polymorphism on changes in global DNA methylation in young women consuming a low folate diet followed by repletion with the current Recommended Dietary Allowance (RDA). Women (age 20-30 years) with the TT (variant; n = 19) or CC (n = 22) genotype for the MTHFR 677C-->T polymorphism participated in a folate depletion-repletion study (7 weeks, 115 microg DFE/day; 7 weeks, 400 microg DFE/day). DNA methylation was measured at baseline, week 7, and week 14 using a [3H]methyl acceptance assay and a novel liquid chromatography tandem mass spectrometry assay of the DNA bases methylcytosine and cytosine. [3H]Methyl group acceptance tended to increase (P = 0.08) during depletion in all subjects, indicative of a decrease in global DNA methylation. During repletion, the raw change and the percent change in the methylcytosine/total cytosine ratio increased (P = 0.03 and P = 0.04, respectively) only in the subjects with the TT genotype. Moderate folate depletion in young women may cause a decrease in overall DNA methylation. The response to folate repletion suggests that following folate depletion women with the MTHFR 677 TT genotype have a greater increase in DNA methylation with folate repletion than women with the CC genotype.  相似文献   
998.
A structurally simplified macrolactone analogue of halichondrin B was identified that retains the potent cell growth inhibitory activity of the natural product in vitro.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号