首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   763篇
  免费   79篇
  2023年   3篇
  2022年   3篇
  2021年   9篇
  2020年   5篇
  2019年   11篇
  2018年   9篇
  2017年   14篇
  2016年   11篇
  2015年   32篇
  2014年   33篇
  2013年   31篇
  2012年   52篇
  2011年   58篇
  2010年   39篇
  2009年   34篇
  2008年   45篇
  2007年   40篇
  2006年   36篇
  2005年   55篇
  2004年   47篇
  2003年   43篇
  2002年   45篇
  2001年   13篇
  2000年   10篇
  1999年   16篇
  1998年   11篇
  1997年   9篇
  1996年   11篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   6篇
  1991年   8篇
  1990年   5篇
  1989年   9篇
  1988年   8篇
  1987年   3篇
  1986年   5篇
  1985年   9篇
  1984年   6篇
  1983年   1篇
  1982年   4篇
  1981年   7篇
  1980年   4篇
  1979年   3篇
  1978年   5篇
  1977年   1篇
  1976年   4篇
  1974年   3篇
  1971年   1篇
排序方式: 共有842条查询结果,搜索用时 328 毫秒
61.
We report the first genome-wide association study of habitual caffeine intake. We included 47,341 individuals of European descent based on five population-based studies within the United States. In a meta-analysis adjusted for age, sex, smoking, and eigenvectors of population variation, two loci achieved genome-wide significance: 7p21 (P = 2.4 × 10(-19)), near AHR, and 15q24 (P = 5.2 × 10(-14)), between CYP1A1 and CYP1A2. Both the AHR and CYP1A2 genes are biologically plausible candidates as CYP1A2 metabolizes caffeine and AHR regulates CYP1A2.  相似文献   
62.
63.
Large-scale candidate gene analysis of HDL particle features   总被引:1,自引:0,他引:1  

Background

HDL cholesterol (HDL-C) is an established marker of cardiovascular risk with significant genetic determination. However, HDL particles are not homogenous, and refined HDL phenotyping may improve insight into regulation of HDL metabolism. We therefore assessed HDL particles by NMR spectroscopy and conducted a large-scale candidate gene association analysis.

Methodology/Principal Findings

We measured plasma HDL-C and determined mean HDL particle size and particle number by NMR spectroscopy in 2024 individuals from 512 British Caucasian families. Genotypes were 49,094 SNPs in >2,100 cardiometabolic candidate genes/loci as represented on the HumanCVD BeadChip version 2. False discovery rates (FDR) were calculated to account for multiple testing. Analyses on classical HDL-C revealed significant associations (FDR<0.05) only for CETP (cholesteryl ester transfer protein; lead SNP rs3764261: p = 5.6*10−15) and SGCD (sarcoglycan delta; rs6877118: p = 8.6*10−6). In contrast, analysis with HDL mean particle size yielded additional associations in LIPC (hepatic lipase; rs261332: p = 6.1*10−9), PLTP (phospholipid transfer protein, rs4810479: p = 1.7*10−8) and FBLN5 (fibulin-5; rs2246416: p = 6.2*10−6). The associations of SGCD and Fibulin-5 with HDL particle size could not be replicated in PROCARDIS (n = 3,078) and/or the Women''s Genome Health Study (n = 23,170).

Conclusions

We show that refined HDL phenotyping by NMR spectroscopy can detect known genes of HDL metabolism better than analyses on HDL-C.  相似文献   
64.
Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with the most significant adhesion to the 59M cell line. Ovarian cancer cells induced platelet activation [P-selectin expression] in a dose dependent manner, with the most significant activation seen in response to the 59M cell line. The platelet antagonists [cangrelor, MRS2179, and apyrase] inhibited 59M cell induced activation suggesting a P2Y12 and P2Y1 receptor mediated mechanism of platelet activation dependent on the release of ADP by 59M cells. A2780 and 59M cells potentiated PAR-1, PAR-4, and TxA2 receptor mediated platelet activation, but had no effect on ADP, epinephrine, or collagen induced activation. Analysis of gene expression changes in ovarian cancer cells following treatment with washed platelets or platelet releasate showed a subtle but valid upregulation of anti-apoptotic, anti-autophagy pro-angiogenic, pro-cell cycle and metabolic genes. Thus, ovarian cancer cells with different metastatic potential adhere and activate platelets differentially while both platelets and platelet releasate mediate pro-survival and pro-angiogenic signals in ovarian cancer cells.  相似文献   
65.

Background

The identification of sensitive biomarkers for the detection of ovarian cancer is of high clinical relevance for early detection and/or monitoring of disease recurrence. We developed a systematic multi-step biomarker discovery and verification strategy to identify candidate DNA methylation markers for the blood-based detection of ovarian cancer.

Methodology/Principal Findings

We used the Illumina Infinium platform to analyze the DNA methylation status of 27,578 CpG sites in 41 ovarian tumors. We employed a marker selection strategy that emphasized sensitivity by requiring consistency of methylation across tumors, while achieving specificity by excluding markers with methylation in control leukocyte or serum DNA. Our verification strategy involved testing the ability of identified markers to monitor disease burden in serially collected serum samples from ovarian cancer patients who had undergone surgical tumor resection compared to CA-125 levels.We identified one marker, IFFO1 promoter methylation (IFFO1-M), that is frequently methylated in ovarian tumors and that is rarely detected in the blood of normal controls. When tested in 127 serially collected sera from ovarian cancer patients, IFFO1-M showed post-resection kinetics significantly correlated with serum CA-125 measurements in six out of 16 patients.

Conclusions/Significance

We implemented an effective marker screening and verification strategy, leading to the identification of IFFO1-M as a blood-based candidate marker for sensitive detection of ovarian cancer. Serum levels of IFFO1-M displayed post-resection kinetics consistent with a reflection of disease burden. We anticipate that IFFO1-M and other candidate markers emerging from this marker development pipeline may provide disease detection capabilities that complement existing biomarkers.  相似文献   
66.
67.
Tetraspanins cause the clustering of membrane proteins into a level of organisation essential for cellular function. Given the importance and complicated nature of this mechanism, we attempted a novel approach to identify the function of a single component in a biologically relevant context. A morpholino knockdown strategy was used to investigate the role of cd63, a membrane protein associated with intracellular transport and a melanoma marker, in embryonic zebrafish. By using three separate morpholinos targeting cd63, we were able to identify a specific phenotype. Strikingly, morphant fish failed to hatch due to the lack of secreted proteolytic enzymes required for chorion-softening. The morphology of the hatching gland at both the cellular and intracellular levels was disorganised, suggesting a role for cd63 in the functioning of this organ. This work identifies a specific role for cd63 in the zebrafish embryo and provides evidence for the suitability of zebrafish as a model system for the investigation of tetraspanin enriched microdomains.  相似文献   
68.
69.
We used human neural stem cells (hNSCs) and their differentiated cultures as a model system to evaluate the mechanism(s) involved in rotenone (RO)- and camptothecin (CA)-induced cytotoxicity. Results from ultrastructural damage and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining indicated that RO-induced cytotoxicity resembled CA-induced apoptosis more than H(2)O(2)-induced necrosis. However, unlike CA-induced, caspase 9/3-dependent apoptosis, there was no increased activity in caspase 9, caspase 3 or poly (ADP-ribose) polymerase (PARP) cleavage in RO-induced cytotoxicity, in spite of time-dependent release of cytochrome c and apoptosis-inducing factor (AIF) following mitochondrial membrane depolarization and a significant increase in reactive oxygen species generation. Equal doses of RO and CA used in hNSCs induced caspase 9/3-dependent apoptosis in differentiated cultures. Time-dependent ATP depletion occurred earlier and to a greater extent in RO-treated hNSCs than in CA-treated hNSCs, or differentiated cultures treated with RO or CA. In conclusion, these results represent a unique ultrastructural and molecular characterization of RO- and CA-induced cytotoxicity in hNSCs and their differentiated cultures. Intracellular ATP levels may play an important role in determining whether neural progenitors or their differentiated cells follow a caspase 9/3-dependent or -independent pathway in response to acute insults from neuronal toxicants.  相似文献   
70.
The green fluorescent protein (GFP) has been established as the premier in vivo reporter for investigations of gene expression, protein localization, and cell and organism dynamics. The fungal transformation vector pCT74, with sGFP under the control of the ToxA promoter from Pyrenophora tritici-repentis, effectively expresses GFP in a diverse group of filamentous ascomycetes. Due to the versatility of ToxA promoter-driven expression of GFP, we constructed an additional set of fluorescent protein expression vectors to expand the color palette of fluorescent markers for use in filamentous fungi. EYFP, ECFP and mRFP1 were successfully expressed from the ToxA promoter in its fungus of origin, P. tritici-repentis, and a distant relative, Verticillium dahliae. Additionally the ToxB promoter from P. tritici-repentis drove expression of sGFP in V. dahliae, suggesting a similar potential to the ToxA promoter for heterologous expression in ascomycetes. The suite of fungal transformation vectors presented here promise to be useful for a variety of fungal research applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号