首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   51篇
  2022年   4篇
  2021年   10篇
  2015年   12篇
  2014年   4篇
  2013年   6篇
  2012年   11篇
  2011年   6篇
  2010年   7篇
  2009年   12篇
  2008年   7篇
  2007年   10篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   9篇
  2002年   13篇
  2001年   3篇
  2000年   7篇
  1999年   7篇
  1998年   10篇
  1997年   5篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   9篇
  1991年   10篇
  1990年   10篇
  1989年   6篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   7篇
  1983年   4篇
  1981年   6篇
  1979年   3篇
  1978年   5篇
  1976年   6篇
  1973年   4篇
  1972年   4篇
  1971年   9篇
  1969年   5篇
  1968年   7篇
  1967年   10篇
  1966年   5篇
  1965年   4篇
  1942年   3篇
  1941年   3篇
  1940年   4篇
排序方式: 共有369条查询结果,搜索用时 15 毫秒
91.
Flooded rice is grown across wide geographic boundaries from as far north as Manchuria and as far south as Uruguay and New South Wales, primarily because of its adaptability across diverse agronomic and climatic conditions. Salt‐stress damage, a common occurrence in delta and coastal rice production zones, could be heightened by the interactions between high temperature and relative humidity (vapor pressure deficit – VPD). Using temporal and spatial observations spanning 107 seasons and 19 rice‐growing locations throughout India with varying electrical conductivity (EC), including coastal saline, inland saline, and alkaline soils, we quantified the proportion of VPD inducing salinity damage in rice. While controlling for time‐invariant factors such as trial locations, rice cultivars, and soil types, our regression analysis indicates that EC has a nonlinear detrimental effect on paddy rice yield. Our estimates suggest these yield reductions become larger at higher VPD. A one standard deviation (SD) increase in EC from its mean value is associated with 1.68% and 4.13% yield reductions at median and maximum observed VPD levels, respectively. Yield reductions increase roughly sixfold when the one SD increase is taken from the 75th percentile of EC. In combination, high EC and VPD generate near catastrophic crop loss as predicted yield approaches zero. If higher VPD levels driven by global warming materialize in conjunction with rising sea levels or salinity incursion in groundwater, this interaction becomes an important and necessary predictor of expected yield losses and global food security.  相似文献   
92.
Pseudorabies virus (PRV) Us9 is a small, tail-anchored (TA) membrane protein that is essential for axonal sorting of viral structural proteins and is highly conserved among other members of the alphaherpesvirus subfamily. We cloned the Us9 homologs from two human pathogens, varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV-1), as well as two veterinary pathogens, equine herpesvirus type 1 (EHV-1) and bovine herpesvirus type 1 (BHV-1), and fused them to enhanced green fluorescent protein to examine their subcellular localization and membrane topology. Akin to PRV Us9, all of the Us9 homologs localized to the trans-Golgi network and had a type II membrane topology (typical of TA proteins). Furthermore, we examined whether any of the Us9 homologs could compensate for the loss of PRV Us9 in anterograde, neuron-to-cell spread of infection in a compartmented chamber system. EHV-1 and BHV-1 Us9 were able to fully compensate for the loss of PRV Us9, whereas VZV and HSV-1 Us9 proteins were unable to functionally replace PRV Us9 when they were expressed in a PRV background.Alphaherpesviruses are classified by their variable host range, short reproductive cycle, and ability to establish latency in the peripheral nervous system (PNS) (36, 37). Commonly studied pathogens of this subfamily include herpes simplex virus (HSV) and varicella-zoster virus (VZV), as well as the veterinary pathogens pseudorabies virus (PRV), equine herpesvirus (EHV), and bovine herpesvirus (BHV). Initial infection begins with the virus entering the host mucosal surfaces and spreading between cells of the mucosal epithelium. Invariably, virus enters the PNS through the infection of peripheral nerves that innervate this region. The virus establishes a latent infection in PNS neurons that can be reactivated and that persists for the life of the host (36). In most natural infections, virus replication in the PNS never spreads to the central nervous system (CNS). However, on rare occasions, invasion of the CNS does occur, resulting in devastating encephalitis (46). Trafficking of virus particles from infected epithelial cells into the axon and subsequent transport to neuronal cell bodies is known as retrograde spread of infection. Trafficking of virus particles that are assembled in the neuronal cell body and subsequently sorted into axons for transport to epithelial cells at the initial site of infection (upon reactivation from latency) is known as anterograde spread of infection.Though the natural host of PRV is swine, the virus infects a wide variety of animals, including rodents, cats, dogs, rabbits, cattle, and chicken embryos, but not higher primates (1, 30, 47). In contrast to the well-contained spread of PRV within its natural host, infection of other mammals is usually lethal. Instead of stopping in the PNS, infection continues on to second-order and third-order neurons in the CNS (reviewed in reference 35). This facet of PRV infection makes it a useful tracer of neuronal connections (18). Work in our lab has identified three PRV proteins, Us9 and the gE/gI heterodimer, which are critical for efficient anterograde spread of infection in vivo (i.e., spread from presynaptic to postsynaptic neurons) (6, 45). The molecular mechanism by which these proteins function has been further elucidated in vitro using primary neuronal cultures of superior cervical ganglion (SCG) harvested from embryonic rat pups. PRV Us9 and, to a lesser extent, gE/gI are required for efficient axonal targeting of viral structural proteins, a necessary step for subsequent anterograde, transneuronal spread (10, 11, 27, 28, 42).PRV Us9 is a type II, tail-anchored (TA) membrane protein that is highly enriched in lipid raft microdomains and resides predominantly in or near the trans-Golgi network (TGN) inside infected cells (5-7, 27). It has homologs in most of the alphaherpesviruses, including VZV (16), HSV-1 (22), HSV-2 (17), EHV-1 (21, 40), EHV-4 (41), BHV-1 (25), and BHV-5 (14). Though several studies have examined individually the Us9 proteins encoded by VZV (16), HSV-1 (4, 22, 34, 39), BHV-1 (13), and BHV-5 (14), several gaps in our understanding of Us9 biology remain, namely, whether all of the PRV Us9 homologs are type II membrane proteins, if the proteins localize to similar subcellular compartments within different cell types, and if they can functionally substitute for the loss of PRV Us9 in axonal sorting and anterograde spread of infection. The aim of this study is to examine PRV Us9 in parallel assays with its homologs from VZV, HSV-1, EHV-1, and BHV-1 to identify potential similarities and differences between these highly conserved alphaherpesvirus proteins.  相似文献   
93.

Background  

The genetic control of floral organ specification is currently being investigated by various approaches, both experimentally and through modeling. Models and simulations have mostly involved boolean or related methods, and so far a quantitative, continuous-time approach has not been explored.  相似文献   
94.
95.
A chicken gene conferring susceptibility to subgroup A avian sarcoma and leukosis viruses (ASLV-A) was recently identified by a gene transfer strategy. Classical genetic approaches had previously identified a locus, TVA, that controls susceptibility to ASLV-A. Using restriction fragment length polymorphism (RFLP) mapping in inbred susceptible (TVA*S) and resistant (TVA*R) chicken lines, we demonstrate that in 93 F2 progeny an RFLP for the cloned receptor gene segregates with TVA. From these analyses we calculate that the cloned receptor gene lies within 5 centimorgans of TVA, making it highly probable that the cloned gene is the previously identified locus TVA. The polymorphism that distinguishes the two alleles of TVA in these inbred lines affects the encoded amino acid sequence of the region of Tva that encompasses the viral binding domain. However, analysis of the genomic sequence encoding this region of Tva in randomly bred chickens suggests that the altered virus binding domain is not the basis for genetic resistance in the chicken lines analyzed.Avian sarcoma and leukosis viruses (ASLV) may be classified into several subgroups based on properties of the viral envelope proteins. Five major subgroups of ASLV (A to E) have been defined based on immunological reactivity of the viral envelope proteins, host range, and infection interference patterns (reviewed in reference 18). The subgroup specificity of the virus maps to the env gene, and distinct hypervariable regions within env have been shown to determine the viral subgroup (2, 3, 7, 8).Patterns of susceptibility of inbred chicken lines to infection with the various ASLV subgroups suggest that three loci control viral entry for the five major ASLV subgroups (11, 12, 15, 17). Dominant alleles at the TVA and TVC (TVA*S and TVC*S) loci confer susceptibility to subgroups A and C viruses, respectively. The TVB locus is more complex, with various alleles determining infection by subgroup B, D, and E viruses. TVA, TVB, and TVC appear to act at the level of viral entry into the cell; therefore, it has been assumed that the TV loci encode or control expression of the cellular receptors for ASLV (5, 13).Recently, a gene that confers susceptibility to subgroup A ASLV (ASLV-A) was cloned by a gene transfer strategy (1, 19). Molecular clones containing coding sequences for this gene relieve the block to viral entry when expressed in a number of mammalian cell lines (1, 19). The gene encodes a surface glycoprotein that has been shown to bind directly and specifically to the ASLV-A envelope protein (4, 9). In addition, binding of the receptor protein to ASLV-A envelope protein induces conformational changes in the viral glycoproteins that appear to be associated with viral entry (10). Finally, an antibody to the receptor protein specifically blocks infection of chicken cells by subgroup A viruses, suggesting that this gene encodes the normal ASLV-A receptor on chicken cells (1). Taken together, these results demonstrate that the cloned gene encodes a subgroup A virus receptor.Since it is clear that the cloned gene encodes an ASLV-A receptor, the protein supposed to be encoded by the classical TVA locus, we asked whether the identified receptor gene mapped to the TVA locus. In this paper we show that a restriction fragment length polymorphism (RFLP) of DNA from inbred chickens can be used to demonstrate that the cloned ASLV-A receptor gene maps to within 5 centimorgans (cM) of the TVA locus as defined by susceptibility to ASLV-A, making it highly probable that the cloned gene is TVA. In addition, analysis of the genomic sequences encoding the viral interaction domain of the receptor in both inbred and randomly bred chickens demonstrates that alterations in this region of the receptor are not responsible for the resistance phenotype.

TVA segregation analysis.

Inbred chicken lines homozygous for TVA alleles encoding either sensitivity (TVA*S) or resistance (TVA*R) were used to generate birds in which the TVA segregation pattern could be studied. Regional Poultry Research Lab lines 63 (TVA*S/*S TVB*S/*S) and 72 (TVA*R/*R TVB*R/*R) (6) were crossed, and the resulting heterozygous F1 progeny were mated to generate 93 F2 chicks. The susceptibility phenotype of the F2 chicks was determined on the basis of tumor formation following subcutaneous injection of 500 focus-forming units (FFU) of subgroup A Bryan high-titer Rous sarcoma virus (RSV) (RAV-1) and 500 FFU of subgroup B Bryan high-titer RSV (RAV-2) into the right and left wing webs, respectively, of 4-week-old chicks. At 2, 3, and 4 weeks postinjection the wings were palpated to check for tumor development. Chicks were scored as positive for susceptibility (e.g., TVA*S/*S or TVA*S/*R) if a tumor of any size formed in the appropriate wing web.Table Table11 summarizes the distribution of susceptibility to subgroups A and B RSV in the F2 chicks. Segregation of TVB yielded roughly the predicted frequency of susceptible (67 observed versus 70 expected) and resistant (26 observed versus 23 expected) progeny for a dominant locus (P > 0.05). In contrast, the distribution of subgroup A-susceptible and -resistant birds deviated significantly from the expected 3:1 ratio, with an excessive number of subgroup A-resistant chicks observed and a ratio of 2:1 (χ2 = 3.4) (Table (Table1).1). Previous analysis of the segregation of TVA using the same chicken lines did not reveal an altered distribution of sensitive and resistant birds (6), suggesting that the bias seen here may be a chance deviation from the expected ratio. Segregation of two endogenous virus loci, ALVE2 (previously designated ev2) (carried by line 72) and ALVE3 (previously designated ev3) (carried by line 63), also gave roughly the expected 3:1 ratio in these F2 chicks (data not shown). When the segregation bias in the ASLV-A-susceptible birds was accounted for, then susceptibility to subgroup A and B RSV segregated independently, as was expected since the TVA and TVB genes have been reported to be unlinked (6). Recent mapping studies also confirmed that TVA and TVB are found on different linkage groups (3a).

TABLE 1

Segregation of resistance and susceptibility to subgroup A and B viruses in F2 progeny obtained by crossing lines 63 and 72
Subgroup B susceptibility phenotypeaNo. of progeny with subgroup A susceptibility phenotypeb
Total
SusceptibleResistant
Susceptible452267
Resistant17926
Total6231
Open in a separate windowaSusceptibility to subgroup B viruses was determined by injection of 500 FFU of Bryan high-titer RSV (RAV-2) into the wing webs of 4-week-old chicks. Tumors were scored on the basis of palpation of the wing web at 2, 3, and 4 weeks postinfection. bSusceptibility to subgroup A viruses was determined as described for subgroup B except that Bryan high-titer RSV (RAV-1) was used. 

Identification of an RFLP in the ASLV-A receptor.

In an attempt to define an RFLP that differentiated alleles of the cloned ASLV-A receptor gene in line 72 and 63 birds, genomic DNA from the parental lines was digested with a battery of 18 different restriction enzymes and then Southern blotted. Four unique-sequence DNA probes from the cloned chicken ASLV-A receptor gene corresponding to regions in exons 2, 3, and 4 and intron 1 were prepared by random oligonucleotide priming of purified DNA fragments and hybridized to these blots. From these experiments, a single TaqI polymorphism that distinguishes alleles of the receptor gene in lines 72 and 63 was found (Fig. (Fig.1).1). The polymorphism was seen with a probe encompassing exon 3 of the receptor gene and generated a 3.0-kb fragment in DNA from line 72 (TVA*R/*R) and a 2.4-kb band in DNA from line 63 (TVA*S/*S). Open in a separate windowFIG. 1RFLP mapping of the cloned receptor gene. Genomic DNA from the parental lines, 72 and 63, and 18 F2 progeny was digested with TaqI and then analyzed by Southern blotting with a random-primer-labeled 375-bp probe specific for the cloned ASLV-A receptor gene. The approximate sizes (in kilobases) of the two hybridizing fragments are indicated. The susceptibility of the F2 progeny to ASLV-A infection is indicated. R, resistant; S, sensitive.

Analysis of the Taq RFLP segregation in the F2 progeny.

The TaqI polymorphism was used to correlate segregation of the ASLV-A receptor in the F2 chicks with the TVA phenotype as determined by tumor induction. Genomic DNA prepared from blood of the F2 progeny was digested with TaqI, Southern blotted, and hybridized with the exon 3 probe. Figure Figure11 shows the distribution of the TaqI polymorphism in 18 of the F2 progeny. There is an absolute correlation of the 2.4-kb fragment diagnostic for the receptor allele from line 63 (TVA*S/*S), with sensitivity to ASLV-A. As expected for a dominant gene, both homozygotes and heterozygotes carrying this allele were susceptible to subgroup A virus. Similarly, all the F2 progeny that were homozygous for the 3.0-kb TaqI fragment inherited from line 72 were resistant to infection, as would be expected for birds carrying the recessive TVA*R allele. Analysis of segregation of the TaqI polymorphism in these birds plus the remaining 75 F2 birds demonstrated that the 2.4-kb allele was present in all 62 of the F2 progeny susceptible to ASLV-A (Table (Table2).2). Furthermore, all 31 birds homozygous for the 3.0-kb TaqI fragment inherited from the line 72 parent were resistant to ASLV-A. Thus, in all the examined progeny from the 63 × 72 cross, the TaqI polymorphism that distinguishes the alleles of the cloned receptor gene cosegregated with alleles of TVA.

TABLE 2

Cosegregation of the TaqI RFLP and TVA phenotype
TVA phenotypeaSize(s) (kb) of TaqI fragment(s) observedbNo. of F2 progeny
Susceptible2.416
Susceptible2.4, 3.046
Resistant3.031
Open in a separate windowaThe TVA phenotype was scored by wing web injection of Bryan high-titer RSV (RAV-1) as described in TABLE 1, footnote a. bSizes of fragments observed after hybridization with the exon 3 probe from the cloned ASLV-A receptor gene. The perfect correlation in the segregation pattern of the TaqI polymorphism that distinguishes alleles of the cloned receptor gene with the ASLV-A susceptibility phenotype conferred by TVA strongly suggests that the cloned gene is equivalent to the TVA locus. Calculation of the expected recombination frequency supports this conclusion. If the genetic distance between the RFLP and TVA were 5 cM, then there would be a 99% probability that in 93 progeny we would have observed at least one recombinant in which the RFLP and TVA phenotype segregated independently. Since no such recombinants were observed, the receptor gene is at least within 5 cM of TVA. Given that the cloned receptor gene encodes a protein that binds specifically to the subgroup A envelope and confers ASLV-A susceptibility to mammalian cells, and that this gene is within 5 cM of TVA in a genome of more than 3,000 cM, it is highly probable that the cloned gene is TVA.

The TaqI polymorphism alters the receptor viral binding domain.

Within the extracellular domain of the protein encoded by cloned receptor gene is a 40-residue region closely related to the ligand binding domain of the low-density-lipoprotein receptor (LDLR) (1). Since this region is necessary and sufficient for receptor function (14, 20), we sought to determine if the phenotypes of lines 63 and 72 could be accounted for by differences in the sequence of the viral interaction domain. To address this question, genomic DNA from lines 63 and 72 was amplified by PCR, using primers flanking the LDLR motif in the receptor sequence. Genomic DNA was prepared from approximately 200 to 300 mg of bursa tissue by digestion in 5 ml of DNA preparation buffer (100 mM NaCl, 10 mM Tris-Cl [pH 8], 25 mM EDTA [pH 8], 0.5% sodium dodecyl sulfate, and 0.1 mg of proteinase K per ml) at 50°C overnight in a rotating incubator. After purification of the genomic DNA by standard techniques (16), the region of exon 2 in the receptor gene encoding the LDLR-like motif was amplified by 30 cycles of PCR with the primers 5′ AGCAGGCCCGCCCGTACCTGT 3′ and 5′ CAGGTTCTTTGGCGCAGT 3′.Sequence analysis of the PCR-amplified fragments from the LDLR motif revealed that the polymorphic TaqI site that distinguishes the receptor gene in lines 63 and 72 lies within the region of the receptor gene encoding the viral binding domain (Fig. (Fig.2A).2A). Furthermore, the TaqI polymorphism and a linked alteration immediately upstream change the amino acid sequence at two positions in the LDLR motif of lines 63 and 72 (Fig. (Fig.2A).2A). The receptor sequence in the ASLV-A-resistant line 72 encodes an arginine and a threonine at positions 12 and 16 of the LDLR-like motif, whereas in the susceptible line 63 the receptor sequence encodes histidine and isoleucine at these positions (Fig. (Fig.2A).2A). Thus, the TaqI polymorphism that segregates with TVA lies in exon 2 of the cloned receptor gene and introduces an amino acid variation in the ligand binding domain of the ASLV-A receptor. Open in a separate windowFIG. 2Sequence analysis of the viral interaction region in the ALSV-A receptor. (A) The viral interaction region from the ASLV-A receptor gene in lines 63 and 72 was amplified by PCR and the DNA sequence was determined. The deduced amino acid sequence and DNA sequence for line 63 are shown in the top lines. Nucleotide differences between the two chicken lines are indicated by capital letters, and dots represent identical sequences. For line 72, only the altered amino acid residues are shown. The polymorphic TaqI site is underlined. (B) The viral interaction region of the receptor gene from genomic DNA of randomly bred broiler-type chickens was amplified by PCR and directly sequenced. The deduced amino acid sequence and susceptibility to ASLV-A infection are shown compared to the line 63 sequence. Dots indicate identical residues. R, resistant to ASLV-A; S, sensitive to ASLV-A. C/O represents the sequence of the functional ASLV-A receptor gene identified by gene transfer (19).

An altered viral binding domain is not the mechanism of genetic resistance to ASLV-A infection.

To address whether the altered residues in the receptor of line 72 are responsible for the resistance phenotype in birds of this line, we examined the sequence of the viral binding domain of the receptor gene in a number of randomly bred broiler-type chickens that had been screened for their susceptibility phenotypes by wing web injection of virus as described above. Genomic DNA was isolated and amplified by PCR with the primers listed above. Comparison of the deduced amino acid sequences of the LDLR-like motif from the randomly bred birds demonstrates that the arginine and threonine residues found in line 72 (TVA*R/*R) do not correlate with resistance to ASLV-A in the randomly bred chickens (Fig. (Fig.2B).2B). For example, the receptor gene in chicken 5078 encodes arginine and threonine and does not have the polymorphic TaqI site, yet this chicken is sensitive to ASLV-A infection. In addition, the receptor gene that we first isolated by gene transfer (C/O [Fig. 2B]) encodes arginine and threonine at these positions, yet this gene confers susceptibility to ASLV-A when introduced into mammalian cells (19) or into chicken embryo fibroblasts derived from line 72 embryos (1b). Furthermore, additional data from RFLP mapping of the receptor gene in randomly bred chickens demonstrates that a number of ASLV-A-resistant birds carry the polymorphic TaqI site and thus presumably carry a receptor allele similar to that of the ASLV-A-sensitive line 63 (1a). Therefore, an altered viral binding domain in the receptor is not the basis for the recessive genetic resistance seen in the chicken lines analyzed here. Presumably another change in the receptor alleles in the ASLV-A-resistant line 72 is linked to the polymorphic site, but the mechanism of resistance to ASLV-A conferred by specific alleles of TVA remains to be determined.  相似文献   
96.
Abstract: The rat glial cell line B49 releases into its culture medium a potent neurotrophic factor that exhibits relative specificity for the dopaminergic neurons in dissociated cultures of rat embryonic midbrain. This factor is a heparin-binding, basic protein that is heterogeneously glycosylated and migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and on molecular sieve chromatography with an apparent mass of ∼33–45 kDa. The factor behaves like a disulfide-bonded homodimer, whose biological activity is destroyed by reduction of disulfide bonds but not by SDS-PAGE or reversed-phase (RP)-HPLC. The apparent mass of the monomer is ∼16 kDa after deglycosylation with N-Glycanase. This factor has been purified 34,000-fold to apparent homogeneity by a combination of heparin-affinity chromatography, molecular sieving chromatography, SDS-PAGE, and RP-HPLC. The purified rat protein promotes the survival, morphological differentiation, and high-affinity dopamine reuptake of dopaminergic neurons in midbrain cultures, without obvious effects on total neurons or glia and without increasing high-affinity GABA or serotonin reuptake. The purified protein exhibits an EC50 in midbrain cultures at ∼40 pg/ml, or 1 p M , and has unique amino-terminal and internal amino acid sequences. The sequences provide a basis for cloning and expression of the gene for rat and human glial cell line-derived neurotrophic factor (GDNF), confirming that the protein purified as reported here is GDNF.  相似文献   
97.
Prevascularization of porous biodegradable polymers   总被引:4,自引:0,他引:4  
Highly porous biocompatible and biodegradable polymers in the form of cylindrical disks of 13.5 mm diameter were implanted in the mesentery of male syngeneic Fischer rats for a period of 35 days to study the dynamics of tissue ingrowth and the extent of tissue vascularity, and to explore their potential use as substrates for cell transplantation. The advancing fibrovascular tissue was characterized from histological sections of harvested devices by image analysis techniques. The rate of tissue ingrowth increased as the porosity and/or the pore size of the implanted devices increased. The time required for the tissue to fill the device depended on the polymer crystallinity and was smaller for amorphous polymers. The vascularity of the advancing tissue was consistent with time and independent of the biomaterial composition and morphology. Poly(L-lactic acid) (PLLA) devices of 5 mm thickness, 24.5% crystallinity, 83% porosity, and 166 mum median pore diameter were filled by tissue after 25 days. However, the void volume of prevascularized devices (4%) was minimal and not practical for cell transplantation. In contrast, for amporphous PLLA devices of the same dimensions, and the similar porosity of 87% and median pore diameter of 179 mum, the tissue did not fill completely prevascularized devices, and an appreciable percentage (21%) of device volume was still available for cell engraftment after 25 days of implantation. These studies demonstrate the feasibility of creating vascularized templates of amorphous biodegradable polymers for the transplantation of isolated or encapsulated cell populations to regenerate metabolic organs and tissues. (c) 1993 John Wiley & Sons, Inc.  相似文献   
98.
99.
100.
The complete nucleotide sequence of the major species of cytoplasmic 5S ribosomal RNA of Euglena gracilis has been determined. The sequence is: 5' GGCGUACGGCCAUACUACCGGGAAUACACCUGAACCCGUUCGAUUUCAGAAGUUAAGCCUGGUCAGGCCCAGUUAGUAC UGAGGUGGGCGACCACUUGGGAACACUGGGUGCUGUACGCUUOH3'. This sequence can be fitted to the secondary structural models recently proposed for eukaryotic 5S ribosomal RNAs (1,2). Several properties of the Euglena 5S RNA reveal a close phylogenetic relationship between this organism and the protozoa. Large stretches of nucleotide sequences in predominantly single-stranded regions of the RNA are homologous to that of the trypanosomatid protozoan Crithidia fasticulata. There is less homology when compared to the RNAs of the green alga Chlorella or to the RNAs of the higher plants. The sequence AGAAC near position 40 that is common to plant 5S RNAs is CGAUU in both Euglena and Crithidia. The Euglena 5S RNA has secondary structural features at positions 79-99 similar to that of the protozoa and different from that of the plants. The conclusions drawn from comparative studies of cytochrome c structures which indicate a close phylogenetic relatedness between Euglena and the trypanosomatid protozoa are supported by the comparative data with 5S ribosomal RNAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号