首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   44篇
  2021年   9篇
  2020年   5篇
  2019年   9篇
  2018年   5篇
  2017年   8篇
  2016年   8篇
  2015年   24篇
  2014年   25篇
  2013年   23篇
  2012年   30篇
  2011年   37篇
  2010年   20篇
  2009年   29篇
  2008年   40篇
  2007年   27篇
  2006年   28篇
  2005年   33篇
  2004年   24篇
  2003年   28篇
  2002年   20篇
  2001年   7篇
  2000年   6篇
  1999年   4篇
  1998年   7篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1986年   4篇
  1984年   3篇
  1983年   7篇
  1982年   8篇
  1980年   6篇
  1977年   3篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1973年   6篇
  1972年   3篇
  1971年   3篇
  1962年   3篇
  1935年   3篇
  1933年   3篇
  1929年   3篇
  1927年   4篇
排序方式: 共有619条查询结果,搜索用时 31 毫秒
551.
RNA‐DNA hybrids form throughout the chromosome during normal growth and under stress conditions. When left unresolved, RNA‐DNA hybrids can slow replication fork progression, cause DNA breaks, and increase mutagenesis. To remove hybrids, all organisms use ribonuclease H (RNase H) to specifically degrade the RNA portion. Here we show that, in addition to chromosomally encoded RNase HII and RNase HIII, Bacillus subtilis NCIB 3610 encodes a previously uncharacterized RNase HI protein, RnhP, on the endogenous plasmid pBS32. Like other RNase HI enzymes, RnhP incises Okazaki fragments, ribopatches, and a complementary RNA‐DNA hybrid. We show that while chromosomally encoded RNase HIII is required for pBS32 hyper‐replication, RnhP compensates for the loss of RNase HIII activity on the chromosome. Consequently, loss of RnhP and RNase HIII impairs bacterial growth. We show that the decreased growth rate can be explained by laggard replication fork progression near the terminus region of the right replichore, resulting in SOS induction and inhibition of cell division. We conclude that all three functional RNase H enzymes are present in B. subtilis NCIB 3610 and that the plasmid‐encoded RNase HI contributes to chromosome stability, while the chromosomally encoded RNase HIII is important for chromosome stability and plasmid hyper‐replication.  相似文献   
552.
The hydantoin transporter Mhp1 is a sodium‐coupled secondary active transport protein of the nucleobase‐cation‐symport family and a member of the widespread 5‐helix inverted repeat superfamily of transporters. The structure of Mhp1 was previously solved in three different conformations providing insight into the molecular basis of the alternating access mechanism. Here, we elucidate detailed events of substrate binding, through a combination of crystallography, molecular dynamics, site‐directed mutagenesis, biochemical/biophysical assays, and the design and synthesis of novel ligands. We show precisely where 5‐substituted hydantoin substrates bind in an extended configuration at the interface of the bundle and hash domains. They are recognised through hydrogen bonds to the hydantoin moiety and the complementarity of the 5‐substituent for a hydrophobic pocket in the protein. Furthermore, we describe a novel structure of an intermediate state of the protein with the external thin gate locked open by an inhibitor, 5‐(2‐naphthylmethyl)‐L‐hydantoin, which becomes a substrate when leucine 363 is changed to an alanine. We deduce the molecular events that underlie acquisition and transport of a ligand by Mhp1.  相似文献   
553.
554.
RecA is central to maintaining genome integrity in bacterial cells. Despite the near-ubiquitous conservation of RecA in eubacteria, the pathways that facilitate RecA loading and repair center assembly have remained poorly understood in Bacillus subtilis. Here, we show that RecA rapidly colocalizes with the DNA polymerase complex (replisome) immediately following DNA damage or damage-independent replication fork arrest. In Escherichia coli, the RecFOR and RecBCD pathways serve to load RecA and the choice between these two pathways depends on the type of damage under repair. We found in B. subtilis that the rapid localization of RecA to repair centers is strictly dependent on RecO and RecR in response to all types of damage examined, including a site-specific double-stranded break and damage-independent replication fork arrest. Furthermore, we provide evidence that, although RecF is not required for RecA repair center formation in vivo, RecF does increase the efficiency of repair center assembly, suggesting that RecF may influence the initial stages of RecA nucleation or filament extension. We further identify single-stranded DNA binding protein (SSB) as an additional component important for RecA repair center assembly. Truncation of the SSB C terminus impairs the ability of B. subtilis to form repair centers in response to damage and damage-independent fork arrest. With these results, we conclude that the SSB-dependent recruitment of RecOR to the replisome is necessary for loading and organizing RecA into repair centers in response to DNA damage and replication fork arrest.  相似文献   
555.
556.
Objective: Previous results from this laboratory suggest that a 1‐year dairy intake intervention in young women does not alter fat mass. The objective of this study was to determine the impact of the 1‐year dairy intervention 6 months after completion of the intervention. Research Methods and Procedures: Previously, normal‐weight young women (n = 154) were randomized to one of three calcium intake groups: control (<800 mg/d), medium dairy (1000 to 1100 mg/d), or high dairy (1300 to 1400 mg/d) for a 1‐year trial (n = 135 completed). In the current study, 51 women were assessed 6 months after completion of the intervention trial. Body compositions (body fat, lean mass) were measured using DXA. Self‐report questionnaires were utilized to measure activity and dietary intake (kilocalories, calcium). Results: The high‐dairy group (n = 19) maintained an elevated calcium intake (1027 ± 380 mg/d) at 18 months compared with the control group (n = 18, 818 ± 292; p = 0.02). Mean calcium intake over the 18 months predicted a negative change in fat mass (p = 0.04) when baseline BMI was controlled in regression analysis (model R2 = 0.11). 25‐Hydroxyvitamin D levels were correlated with fat mass at each time‐point (baseline, r = ?0.41, p = 0.003; 12 months, r = ?0.42, p = 0.002; 18 months, r = ?0.32, p = 0.02) but did not predict changes in fat mass. Discussion: Dietary calcium intake over 18 months predicted a negative change in body fat mass. Thus, increased dietary calcium intakes through dairy products may prevent fat mass accumulation in young, healthy, normal‐weight women.  相似文献   
557.
MOTIVATION: Many entity taggers and information extraction systems make use of lists of terms of entities such as people, places, genes or chemicals. These lists have traditionally been constructed manually. We show that distributional clustering methods which group words based on the contexts that they appear in, including neighboring words and syntactic relations extracted using a shallow parser, can be used to aid in the construction of term lists. RESULTS: Experiments on learning lists of terms and using them as part of a gene tagger on a corpus of abstracts from the scientific literature show that our automatically generated term lists significantly boost the precision of a state-of-the-art CRF-based gene tagger to a degree that is competitive with using hand curated lists and boosts recall to a degree that surpasses that of the hand-curated lists. Our results also show that these distributional clustering methods do not generate lists as helpful as those generated by supervised techniques, but that they can be used to complement supervised techniques so as to obtain better performance. AVAILABILITY: The code used in this paper is available from http://www.cis.upenn.edu/datamining/software_dist/autoterm/  相似文献   
558.
Cell cycle checkpoints contribute to survival after exposure to ionizing radiation (IR) by arresting the cell cycle and permitting repair. As such, yeast and mammalian cells lacking checkpoints are more sensitive to killing by IR. We reported previously that Drosophila larvae mutant for grp (encoding a homolog of Chk1) survive IR as well as wild type despite being deficient in cell cycle checkpoints. This discrepancy could be due to differences either among species or between unicellular and multicellular systems. Here, we provide evidence that Grapes is needed for survival of Drosophila S2 cells after exposure to similar doses of IR, suggesting that multicellular organisms may utilize checkpoint-independent mechanisms to survive irradiation. The dispensability of checkpoints in multicellular organisms could be due to replacement of damaged cells by regeneration through increased nutritional uptake and compensatory proliferation. In support of this idea, we find that inhibition of nutritional uptake (by starvation or onset of pupariation) or inhibition of growth factor signaling and downstream targets (by mutations in cdk4, chico, or dmyc) reduced the radiation survival of larvae. Further, some of these treatments are more detrimental for grp mutants, suggesting that the need for compensatory proliferation is greater for checkpoint mutants. The difference in survival of grp and wild-type larvae allowed us to screen for small molecules that act as genotype-specific radiation sensitizers in a multicellular context. A pilot screen of a small molecule library from the National Cancer Institute yielded known and approved radio-sensitizing anticancer drugs. Since radiation is a common treatment option for human cancers, we propose that Drosophila may be used as an in vivo screening tool for genotype-specific drugs that enhance the effect of radiation therapy.  相似文献   
559.
Genomic imbalance is a common cause of phenotypic abnormalities. We measured the relative expression level of genes that map within the microdeletion that causes Williams-Beuren syndrome and within its flanking regions. We found, unexpectedly, that not only hemizygous genes but also normal-copy neighboring genes show decreased relative levels of expression. Our results suggest that not only the aneuploid genes but also the flanking genes that map several megabases away from a genomic rearrangement should be considered possible contributors to the phenotypic variation in genomic disorders.  相似文献   
560.
To gain a broader insight into the role of Bcl-2 proteins in apoptosis induced after mitotic arrest, we investigated the subcellular location, oligomeric structure, and protein interactions of Bax, Bcl-2, and Bcl-xL in vinblastine-treated KB-3 cells. Vinblastine induced the translocation of Bax from the cytosol to the mitochondria, which was accompanied by conformational activation and oligomerization of Bax. Bcl-2 was located in the mitochondria, underwent multisite phosphorylation after vinblastine treatment, and was strictly monomeric under all conditions. In contrast, in control cells, Bcl-xL existed in both monomeric (30 kDa) and oligomeric (150 kDa) forms. Treatment with agents that induced Bcl-xL phosphorylation (microtubule inhibitors) caused loss of the 150-kDa form, but this species was unaffected by apoptotic stimuli that did not stimulate phosphorylation. Vinblastine also promoted Bax activation and Bax oligomerization in HCT116 colon cancer cells. Both wild-type and Bax-deficient HCT116 cells expressed the 150-kDa form of Bcl-xL, which was depleted similarly in both cell lines upon vinblastine treatment. Co-immunoprecipitation studies revealed that in untreated KB-3 cells inactive cytosolic Bax interacted with Bcl-xL, whereas in vinblastine-treated cells, activated mitochondrial Bax did not interact with Bcl-xL. Interaction of Bcl-2 with Bax was not observed under any condition. Overexpression of Bcl-xL inhibited vinblastine-induced Bax activation and Bax dimerization and in parallel inhibited apoptosis. The results indicate that vinblastine-induced apoptosis requires translocation, activation, and oligomerization of Bax and is associated with specific changes in the oligomeric properties of Bcl-xL, which occur independently of Bax.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号