首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   45篇
  2021年   9篇
  2020年   5篇
  2019年   9篇
  2018年   5篇
  2017年   8篇
  2016年   8篇
  2015年   24篇
  2014年   25篇
  2013年   23篇
  2012年   30篇
  2011年   37篇
  2010年   20篇
  2009年   29篇
  2008年   40篇
  2007年   27篇
  2006年   28篇
  2005年   33篇
  2004年   24篇
  2003年   28篇
  2002年   20篇
  2001年   7篇
  2000年   6篇
  1999年   4篇
  1998年   7篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1986年   4篇
  1984年   3篇
  1983年   7篇
  1982年   8篇
  1980年   6篇
  1977年   3篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1973年   6篇
  1972年   3篇
  1971年   3篇
  1962年   3篇
  1935年   3篇
  1933年   3篇
  1929年   3篇
  1927年   4篇
排序方式: 共有620条查询结果,搜索用时 15 毫秒
121.
122.
123.
Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe “Touch and Zap”, an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the “Touch”. By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or “Zap”, as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell''s intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique.  相似文献   
124.
125.
The basic biology and ecology of the South African east coast round herring Etrumeus wongratanai was investigated from samples of fish collected between 2013 and 2016. This species is short-lived and reaches a maximum of 3 years of age, with rapid growth in its first year of life. It reproduces from June to December (austral summer) and condition factor was lowest in May through to August and increased from September, probably reflecting the physiological strain before and during spawning. Fish larvae were the most important food items consumed during summer, whereas eucalanid copepods were the most important prey at other times of the year. Stable-isotope data suggest that there are gradual changes in the trophic level with increasing fish size, δ15N and δ13C values also differed between seasons. The results obtained here are compared with those of other Etrumeus species, regionally and globally.  相似文献   
126.
Objective: Obesity has been linked to both major depressive disorder (MDD) and binge eating disorder (BED) in clinical and epidemiological studies. The present study compared weight loss among patients with and without MDD and BED who participated in a hospital‐based weight loss program modeled after the Diabetes Prevention Program. Research Methods and Procedures: Of 131 obese patients who enrolled in treatment, 17% were diagnosed with MDD only, 13% were diagnosed with BED only, 17% were diagnosed with both MDD and BED, and 53% lacked either diagnosis in a pretreatment clinical interview. Results: After treatment, patients with MDD only attained 63% of the weight loss that non‐depressed patients attained. Patients with BED only attained 55% of the weight loss that non‐binge eaters attained. The effect of MDD on weight loss was not accounted for by the presence of BED or vice versa. Only 27% of patients with both MDD and BED achieved clinically significant weight loss compared with 67% of patients who had neither disorder. Results were not significantly altered when gender, age, and diabetes status were adjusted. Conclusion: Both MDD and BED were prevalent among this obese clinical population, and each disorder was independently associated with worse outcomes. Research is needed to investigate how to increase the efficacy of behavioral weight loss programs for individuals with MDD and/or BED.  相似文献   
127.
Regulatory T cells (Tregs), including natural CD4+CD25+ Tregs and inducible IL-10 producing T regulatory type 1 (T(R)1) cells, maintain tolerance and inhibit autoimmunity. Recently, increased percentages of Tregs have been observed in the blood of septic patients, and ex vivo-activated Tregs were shown to prevent polymicrobial sepsis mortality. Whether endogenous Tregs contribute to sepsis outcome remains unclear. Polymicrobial sepsis, induced by cecal ligation and puncture, caused an increased number of splenic Tregs compared with sham-treated mice. Splenic CD4+CD25+ T cells from septic mice expressed higher levels of Foxp3 mRNA and were more efficient suppressors of CD4+CD25- T effector cell proliferation. Isolated CD4+ T cells from septic mice displayed increased intracellular IL-10 staining following stimulation, indicating that T(R)1 cells may also be elevated in sepsis. Surprisingly, Ab depletion of total CD4+ or CD4+CD25+ populations did not affect mortality. Furthermore, no difference in survival outcome was found between CD25 or IL-10 null mice and wild-type littermates, indicating that Treg or T(R)1-generated IL-10 are not required for survival. These results demonstrate that, although sepsis causes a relative increase in Treg number and increases their suppressive function, their presence does not contribute significantly to overall survival in this model.  相似文献   
128.
Vaccines that elicit CD8+ T-cell responses are routinely tested for immunogenicity in nonhuman primates before advancement to clinical trials. Unfortunately, the magnitude and specificity of vaccine-elicited T-cell responses are variable in currently utilized nonhuman primate populations, owing to heterogeneity in major histocompatibility (MHC) class I genetics. We recently showed that Mauritian cynomolgus macaques (MCM) have unusually simple MHC genetics, with three common haplotypes encoding a shared pair of MHC class IA alleles, Mafa-A*25 and Mafa-A*29. Based on haplotype frequency, we hypothesized that CD8+ T-cell responses restricted by these MHC class I alleles would be detected in nearly all MCM. We examine here the frequency and functionality of these two alleles, showing that 88% of MCM express Mafa-A*25 and Mafa-A*29 and that animals carrying these alleles mount three newly defined simian immunodeficiency virus-specific CD8+ T-cell responses. The epitopes recognized by each of these responses accumulated substitutions consistent with immunologic escape, suggesting these responses exert antiviral selective pressure. The demonstration that Mafa-A*25 and Mafa-A*29 restrict CD8+ T-cell responses that are shared among nearly all MCM indicates that these animals are an advantageous nonhuman primate model for comparing the immunogenicity of vaccines that elicit CD8+ T-cell responses.The immunogenicity and efficacy of vaccines intended for human use are commonly evaluated in rhesus and cynomolgus macaques. Indeed, researchers studied an estimated one million macaques in the search for a polio vaccine (5). More recently, these animals have become the dominant preclinical model for human immunodeficiency virus (HIV) vaccine evaluation. Rhesus and cynomolgus macaques are susceptible to infection with pathogenic strains of simian immunodeficiency virus (SIV), lentiviruses that share close genetic homology to HIV and cause AIDS-defining illnesses (11, 14). Vaccines designed to provide sterilizing immunity or control immunodeficiency virus replication can therefore be evaluated in macaques. In addition, the immune systems of humans and macaques are highly similar, providing hope that promising vaccines in macaques can be readily adapted for use in humans.CD8+ T cells are particularly attractive candidates for vaccine development. Several lines of evidence indicate that CD8+ T cells are important to the control of HIV/SIV viral replication. Expansion of HIV/SIV-specific CD8+ T cells during acute viremia is associated with a sharp decline in viral load (6, 21, 50), while the depletion of CD8+ cells in SIV-infected macaques results in increased viral loads (13, 27) and abrogates the protection elicited by live, attenuated vaccination (30, 38). Furthermore, major histocompatibility complex (MHC) genotyping studies have identified multiple MHC class I alleles enriched in human and macaque elite controllers (17, 19, 26, 31, 49).Recently, Merck and the HIV Vaccine Trials Network cancelled a phase IIb clinical trial evaluating an HIV vaccine designed to elicit CD8+ T-cell immunity. An interim analysis revealed the vaccine was ineffective and that participants with prior immunity to the vaccine vector actually had a higher incidence of HIV infection (7, 28, 39, 43). Dozens of additional vaccines that aim to elicit CD8+ T cells are in various stages of preclinical and early-stage clinical development, and testing these vaccines in macaques will provide the proof-of-concept necessary to predict their success.Unfortunately, it has been impossible to definitively associate the breadth, magnitude, or phenotype of SIV-specific CD8+ T-cell responses, elicited by competing vaccine modalities, to viral control. Indian rhesus macaques are the most commonly used model for HIV vaccine testing but have extremely diverse MHC class I genetics, giving rise to heterogeneous CD8+ T-cell responses. SIV derived CD8+ T-cell epitopes have been defined for eight Indian rhesus macaque MHC class I alleles (24). However, more than 400 classical MHC class I alleles have been identified in rhesus macaques, leaving an enormous gap in our understanding of the overall CD8+ T-cell repertoire following SIV infection (37). Identifying large cohorts of Indian rhesus macaques matched for one or more MHC class I alleles, and thus predicted to mount CD8+ T-cell responses against the same epitopes, is both difficult and expensive. An abundant nonhuman primate model with limited MHC diversity could standardize testing of each new vaccine entering preclinical development. Indeed, head-to-head testing of CD8+ T-cell vaccines is essential to maximize the efficiency of the global vaccine enterprise and prioritize rapid advancement of promising candidates.In contrast to Indian rhesus macaques, Mauritian cynomolgus macaques (MCM) are an insular population that expanded from a small number of founder animals (23) over the last 500 years. The unique natural history of these animals is manifest by exceptionally low genetic diversity. We have characterized the MHC genetics of this population and found only seven common haplotypes containing fewer than 30 MHC class I alleles (12, 48). The three most common MHC haplotypes each express Mafa-A*25 and Mafa-A*29. We examine here the frequency and functionality of these two alleles, showing that 88% of MCM express Mafa-A*25 and Mafa-A*29 and that animals carrying these alleles mount three newly defined SIV-specific CD8+ T-cell responses that drive SIV variation. These results suggest that MCM will provide an exceptionally valuable resource for head-to-head evaluations of competing vaccine modalities.  相似文献   
129.
130.
Hyperuricemia is associated with the metabolic syndrome, gout, renal and cardiovascular disease (CVD). American Indians have high rates of CVD and 25% of individuals in the strong heart family study (SHFS) have high serum uric acid levels. The aim of this study was to investigate the genetic determinants of serum uric acid variation in American Indian participants of the SHFS. A variance component decomposition approach (implemented in SOLAR) was used to conduct univariate genetic analyses in each of three study centers and the combined sample. Serum uric acid was adjusted for age, sex, age × sex, BMI, estimated glomerular filtration rate, alcohol intake, diabetic status and medications. Overall mean ± SD serum uric acid for all individuals was 5.14 ± 1.5 mg/dl. Serum uric acid was found to be significantly heritable (0.46 ± 0.03 in all centers, and 0.39 ± 0.07, 0.51 ± 0.05, 0.44 ± 0.06 in Arizona, Dakotas and Oklahoma, respectively). Multipoint linkage analysis showed significant evidence of linkage for serum uric acid on chromosome 11 in the Dakotas center [logarithm of odds score (LOD) = 3.02] and in the combined sample (LOD = 3.56) and on chromosome 1 (LOD = 3.51) in the combined sample. A strong positional candidate gene in the chromosome 11 region is solute carrier family22, member 12 (SLC22A12) that encodes a major uric acid transporter URAT1. These results show a significant genetic influence and a possible role for one or more genes on chromosomes 1 and 11 on the variation in serum uric acid in American Indian populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号