首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   832篇
  免费   62篇
  2021年   13篇
  2020年   7篇
  2019年   12篇
  2018年   6篇
  2017年   10篇
  2016年   10篇
  2015年   37篇
  2014年   28篇
  2013年   31篇
  2012年   47篇
  2011年   55篇
  2010年   32篇
  2009年   37篇
  2008年   56篇
  2007年   36篇
  2006年   38篇
  2005年   42篇
  2004年   38篇
  2003年   34篇
  2002年   30篇
  2001年   15篇
  2000年   13篇
  1999年   8篇
  1998年   9篇
  1997年   10篇
  1996年   5篇
  1995年   9篇
  1994年   7篇
  1992年   6篇
  1991年   6篇
  1990年   12篇
  1989年   7篇
  1987年   7篇
  1986年   5篇
  1985年   8篇
  1984年   9篇
  1983年   8篇
  1982年   9篇
  1980年   7篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1975年   6篇
  1974年   7篇
  1973年   6篇
  1972年   4篇
  1962年   4篇
  1958年   4篇
  1929年   4篇
  1927年   4篇
排序方式: 共有894条查询结果,搜索用时 459 毫秒
61.
Defective Tyrosyl-DNA phosphodiesterase 1 (TDP1) can cause spinocerebellar ataxia with axonal neuropathy (SCAN1), a neurodegenerative syndrome associated with marked cerebellar atrophy and peripheral neuropathy. Although SCAN1 lymphoblastoid cells show pronounced defects in the repair of chromosomal single-strand breaks (SSBs), it is unknown if this DNA repair activity is important for neurons or for preventing neurodegeneration. Therefore, we generated Tdp1-/- mice to assess the role of Tdp1 in the nervous system. Using both in vitro and in vivo assays, we found that cerebellar neurons or primary astrocytes derived from Tdp1-/- mice display an inability to rapidly repair DNA SSBs associated with Top1-DNA complexes or oxidative damage. Moreover, loss of Tdp1 resulted in age-dependent and progressive cerebellar atrophy. Tdp1-/- mice treated with topotecan, a drug that increases levels of Top1-DNA complexes, also demonstrated significant loss of intestinal and hematopoietic progenitor cells. These data indicate that TDP1 is required for neural homeostasis, and reveal a widespread requisite for TDP1 function in response to acutely elevated levels of Top1-associated DNA strand breaks.  相似文献   
62.
Fibulin-5, an extracellular matrix glycoprotein expressed in elastin-rich tissues, regulates vascular cell behaviour and elastic fibre deposition. Recombinant full-length human fibulin-5 supported primary human aortic SMC (smooth-muscle cell) attachment through alpha5beta1 and alpha4beta1 integrins. Cells on fibulin-5 spread poorly and displayed prominent membrane ruffles but no stress fibres or focal adhesions, unlike cells on fibronectin that also binds these integrins. Cell migration and proliferation were significantly lower on fibulin-5 than on fibronectin. Treatment of cells on fibulin-5 with a beta1 integrin-activating antibody induced stress fibres, increased attachment, migration and proliferation, and stimulated signalling of epidermal growth factor receptor and platelet-derived growth factor receptors alpha and beta. Fibulin-5 also modulated fibronectin-mediated cell spreading and morphology. We have thus identified the beta1 integrins on primary SMCs that fibulin-5 interacts with, and have shown that failure of fibulin-5 to activate these receptors limits cell spreading, migration and proliferation.  相似文献   
63.
A wealth of molecular interaction data is available in the literature, ranging from large-scale datasets to a single interaction confirmed by several different techniques. These data are all too often reported either as free text or in tables of variable format, and are often missing key pieces of information essential for a full understanding of the experiment. Here we propose MIMIx, the minimum information required for reporting a molecular interaction experiment. Adherence to these reporting guidelines will result in publications of increased clarity and usefulness to the scientific community and will support the rapid, systematic capture of molecular interaction data in public databases, thereby improving access to valuable interaction data.  相似文献   
64.
p21-activated kinases (Paks) have been shown to regulate cytoskeleton rearrangements, cell proliferation, attachment, and migration in a variety of cellular contexts, including endothelial cells. However, the role of endothelial Pak in embryo development has not been reported, and currently, there is no consensus on the endothelial function of individual Pak isoforms, in particular p21-activated kinase 2 (Pak2), the main Pak isoform expressed in endothelial cells. In this work, we employ genetic and molecular studies that show that Pak2, but not Pak1, is a critical mediator of development and maintenance of endothelial cell function. Endothelial depletion of Pak2 leads to early embryo lethality due to flawed blood vessel formation in the embryo body and yolk sac. In adult endothelial cells, Pak2 depletion leads to severe apoptosis and acute angiogenesis defects, and in adult mice, endothelial Pak2 deletion leads to increased vascular permeability. Furthermore, ubiquitous Pak2 deletion is lethal in adult mice. We show that many of these defects are mediated through a newly unveiled Pak2/Bmk1 pathway. Our results demonstrate that endothelial Pak2 is essential during embryogenesis and also for adult blood vessel maintenance, and they also pinpoint the Bmk1/Erk5 pathway as a critical mediator of endothelial Pak2 signaling.  相似文献   
65.
66.
67.
Mismatch repair (MMR) corrects DNA polymerase errors occurring during genome replication. MMR is critical for genome maintenance, and its loss increases mutation rates several hundred fold. Recent work has shown that the interaction between the mismatch recognition protein MutS and the replication processivity clamp is important for MMR in Bacillus subtilis. To further understand how MMR is coupled to DNA replication, we examined the subcellular localization of MMR and DNA replication proteins fused to green fluorescent protein (GFP) in live cells, following an increase in DNA replication errors. We demonstrate that foci of the essential DNA polymerase DnaE-GFP decrease following mismatch incorporation and that loss of DnaE-GFP foci requires MutS. Furthermore, we show that MutS and MutL bind DnaE in vitro, suggesting that DnaE is coupled to repair. We also found that DnaE-GFP foci decrease in vivo following a DNA damage-independent arrest of DNA synthesis showing that loss of DnaE-GFP foci is caused by perturbations to DNA replication. We propose that MutS directly contacts the DNA replication machinery, causing a dynamic change in the organization of DnaE at the replication fork during MMR. Our results establish a striking and intimate connection between MMR and the replicating DNA polymerase complex in vivo.  相似文献   
68.
Synthesis and anti-inflammatory activity of novel diarylheptanoids [5-hydroxy-1-phenyl-7-(pyridin-3-yl)-heptan-3-ones and 1-phenyl-7-(pyridin-3-yl)hept-4-en-3-ones] as inhibitors of tumor necrosis factor-α (TNF-α) production is described in the present article. The key reactions involve the formation of a β-hydroxyketone by the reaction of substituted 4-phenyl butan-2-ones with pyridine-3-carboxaldehyde in presence of LDA and the subsequent dehydration of the same to obtain the α,β-unsaturated ketones. Compounds 4i, 5b, 5d, and 5g significantly inhibit lipopolysaccharide (LPS)-induced TNF-α production from human peripheral blood mononuclear cells in a dose-dependent manner. Of note, the in vitro TNF-α inhibition potential of 5b and 5d is comparable to that of curcumin (a naturally occurring diarylheptanoid). Most importantly, oral administration of 4i, 5b, 5d, and 5g (each at 100 mg/kg) but not curcumin (at 100 mg/kg) significantly inhibits LPS-induced TNF-α production in BALB/c mice. Collectively, our findings indicate that these compounds may have potential therapeutic implications for TNF-α-mediated auto-immune/inflammatory disorders.  相似文献   
69.
70.

Objective

Dendritic cells bind an array of antigens and DC-SIGN has been postulated to act as a receptor for mucosal pathogen transmission. Bile salt-stimulated lipase (BSSL) from human milk potently binds DC-SIGN and blocks DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with HIV-1. Objective was to study variation in DC-SIGN binding properties and the relation between DC-SIGN binding capacity of milk and BSSL gene polymorphisms.

Study Design

ELISA and PCR were used to study DC-SIGN binding properties and BSSL exon 11 size variation for human milk derived from 269 different mothers distributed over 4 geographical regions.

Results

DC-SIGN binding properties were highly variable for milks derived from different mothers and between samplings from different geographical regions. Differences in DC-SIGN binding were correlated with a genetic polymorphism in BSSL which is related to the number of 11 amino acid repeats at the C-terminus of the protein.

Conclusion

The observed variation in DC-SIGN binding properties among milk samples may have implications for the risk of mucosal transmission of pathogens during breastfeeding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号