首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   560篇
  免费   40篇
  2021年   9篇
  2020年   5篇
  2019年   9篇
  2018年   4篇
  2017年   8篇
  2016年   7篇
  2015年   22篇
  2014年   23篇
  2013年   21篇
  2012年   30篇
  2011年   36篇
  2010年   20篇
  2009年   28篇
  2008年   40篇
  2007年   27篇
  2006年   28篇
  2005年   33篇
  2004年   24篇
  2003年   28篇
  2002年   20篇
  2001年   7篇
  2000年   6篇
  1999年   4篇
  1998年   7篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1986年   3篇
  1984年   3篇
  1983年   6篇
  1982年   7篇
  1980年   6篇
  1977年   3篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1973年   6篇
  1972年   3篇
  1962年   3篇
  1935年   3篇
  1934年   2篇
  1933年   3篇
  1929年   3篇
  1927年   4篇
  1922年   2篇
排序方式: 共有600条查询结果,搜索用时 984 毫秒
131.

Background  

The protein components of mature skeletal muscle have largely been characterized, but the mechanics and sequence of their assembly during normal development remain an active field of study. Chaperone proteins specific to sarcomeric myosins have been shown to be necessary in zebrafish and invertebrates for proper muscle assembly and function.  相似文献   
132.
Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs). MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.  相似文献   
133.
A thickness shear-mode acoustic wave device, operated in a flow-through format, was used to detect the binding of ions or peptides to surface-attached calmodulin. On-line surface attachment of the protein was achieved by immobilisation of the biotinylated molecule via a neutravidin-biotin linkage onto the surface of the gold electrode of the detector. The interaction between calmodulin, and calcium and magnesium ions induced an increase in resonant frequency and a decrease in motional resistance, which were reversible on washing with buffer. Interestingly, the changes in resonant frequency and motional resistance induced by the binding were opposite to the normal operation of the detector. The response was interpreted as a decrease in surface coupling (partial slip at the liquid/solid interface) instigated by exposure of hydrophobic domains on the protein, and an increase in the thickness, and hence effective wavelength, of the acoustic device, corresponding to an increase in the length of calmodulin by 1.5 A. This result is consistent with the literature value of 4 A. In addition, the interaction of the protein with peptide together with calcium ions was detected successfully, despite the relatively low molecular mass of the 2-kDa peptide. These results confirm the potential of acoustic wave physics for the detection of changes in the conformational chemistry of monolayer of biochemical macromolecules at the solid/liquid interface.  相似文献   
134.

Background  

A great deal of effort and expense are being expended internationally in attempts to detect genetic polymorphisms contributing to susceptibility to complex human disease. Techniques such as Linkage Disequilibrium mapping are being increasingly used to examine and compare markers across increasingly large datasets. Visualisation techniques are becoming essential to analyse the ever-growing volume of data and results available with any given analysis.  相似文献   
135.
The dynamic characteristics of the proximal arterial system are studied by solving the nonlinear momentum and mass conservation equations for pressure and flow. The equations are solved for a model systemic arterial system that includes the aorta, common iliacs, and the internal and external iliac arteries. The model includes geometric and elastic taper of the aorta, nonlinearly elastic arteries, side flows, and a complex distal impedance. The model pressure wave shape, inlet and outlet impedance, wave travel, and apparent wave velocity compare favorably with the values measured on humans. Calculations indicate that: (i) reflections are the major factor determining the shape and distal amplification of the pressure wave in the arterial tree; (ii) although important in attenuating the proximal transmission of reflecting waves, geometric taper is not the major cause of the distal pressure wave amplification; (iii) the dicrotic wave is a result of peripheral reflection and is not due to the sudden change in flow at the end of systole; (iv) the elastic taper and nonlinearity of the wall elasticity are of minor significance in determining the flow and pressure profiles; and (v) in spite of numerous nonlinearities, the system behaves in a somewhat linear fashion for the lower frequency components.  相似文献   
136.
The c-Jun NH(2)-terminal kinase (JNK) subgroup of mitogen-activated protein kinases has been implicated largely in stress responses, but an increasing body of evidence has suggested that JNK also plays a role in cell proliferation and survival. We examined the effect of JNK inhibition, using either SP600125 or specific antisense oligonucleotides, on cell proliferation and cell cycle progression. SP600125 was selective for JNK in vitro and in vivo versus other kinases tested including ERK, p38, cyclin-dependent protein kinase 1 (CDK1), and CDK2. SP600125 inhibited JNK activity and KB-3 cell proliferation with the same dose dependence, suggesting that inhibition of proliferation was a direct consequence of JNK inhibition. Inhibition of proliferation by SP600125 was associated with an increase in the G(2)-M and apoptotic fractions of cells but was not associated with p53 or p21 induction. Antisense oligonucleotides to JNK2 but not JNK1 caused highly significant inhibition of cell proliferation. Wild-type mouse fibroblasts responded similarly with proliferation inhibition and apoptosis induction, whereas c-jun(-/-) fibroblasts were refractory to the effects of SP600125, suggesting that JNK signaling to c-Jun is required for cell proliferation. Studies in synchronized KB-3 cells indicated that SP600125 delayed transit time through S and G(2)-M phases. Correspondingly, JNK activity increased in late S phase and peaked in late G(2) phase. During synchronous mitotic progression, cyclin B levels increased concomitant with phosphorylation of c-Jun, H1 histone, and Bcl-2. In the presence of SP600125, mitotic progression was prolonged, and c-Jun phosphorylation was inhibited, but neither H1 nor Bcl-2 phosphorylation was inhibited. However, the CDK inhibitor roscovitine inhibited mitotic Bcl-2 phosphorylation. These results indicate that JNK, and more specifically the JNK2 isoform, plays a key role in cell proliferation and cell cycle progression. In addition, conclusive evidence is presented that a kinase other than JNK, most likely CDK1 or a CDK1-regulated kinase, is responsible for mitotic Bcl-2 phosphorylation.  相似文献   
137.
138.
TLR9 is a mammalian Toll-like receptor homologue that appears to function as an innate immune pattern recognition protein for motifs that are far more common in bacterial than in mammalian DNA. The gene was sequenced in 71 subjects from three self-identified U.S. ethnic groups to identify single-nucleotide polymorphisms (SNPs). A total of 20 SNPs were found of which only 20% were in the public dbSNP database. Four SNPs were relatively common in all three ethnic samples. Using these four SNPs, seven distinct haplotypes were statistically inferred, of which four accounted for 75% or more chromosomes. These four haplotypes could be distinguished from each other by the alleles of two SNPs (-1237 and 2848). Five exploratory nested case-control disease-association studies (asthma, DVT, MI, and COPD in European Americans and asthma in African Americans) were performed by genotyping DNA collected from four ongoing cohort studies. There was evidence suggesting increased risk for asthma with a C allele at -1237 (odds ratio 1.85, 95%CI 1.05 to 3.25) among European Americans (genotypes available from 67 cases and 152 controls). No other significant disease associations were detected. Replication of this finding in other, larger samples is needed. This study suggests that there is substantial diversity in human TLR9, possibly associated with asthma in Europeans but not African Americans. No association was detected with three other diseases potentially related to innate immunity.  相似文献   
139.
140.
Nitrogen (N) is an essential requirement for kernel growth in maize (Zea mays); however, little is known about how N assimilates are metabolized in young earshoots during seed development. The objective of this study was to assess amino acid metabolism in cob and spikelet tissues during the critical 2 weeks following silking. Two maize hybrids were grown in the field for 2 years at two levels of supplemental N fertilizer (0 and 168 kg N/ha). The effects of the reproductive sink on cob N metabolism were examined by comparing pollinated to unpollinated earshoots. Earshoots were sampled at 2, 8, 14, and 18 d after silking; dissected into cob, spikelet, and/or pedicel and kernel fractions; then analyzed for amino acid profiles and key enzyme activities associated with amino acid metabolism. Major amino acids in the cob were glutamine (Gln), aspartic acid (Asp), asparagine (Asn), glutamate, and alanine. Gln concentrations dropped dramatically from 2 to 14 d after silking in both pollinated and unpollinated cobs, whereas all other measured amino acids accumulated over time in unpollinated spikelets and cobs, especially Asn. N supply had a variable effect on individual amino acid levels in young cobs and spikelets, with Asn being the most notably enhanced. We found that the cob performs significant enzymatic interconversions among Gln, alanine, Asp, and Asn during early reproductive development, which may precondition the N assimilate supply for sustained kernel growth. The measured amino acid profiles and enzymatic activities suggest that the Asn to Gln ratio in cobs may be part of a signal transduction pathway involving aspartate aminotransferase, Gln synthetase, and Asn synthetase to indicate plant N status for kernel development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号