首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   12篇
  261篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   8篇
  2016年   4篇
  2015年   12篇
  2014年   14篇
  2013年   14篇
  2012年   25篇
  2011年   18篇
  2010年   11篇
  2009年   11篇
  2008年   17篇
  2007年   15篇
  2006年   12篇
  2005年   18篇
  2004年   17篇
  2003年   8篇
  2002年   8篇
  2001年   2篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   2篇
  1966年   1篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
61.
Oxidative stress of mitochondrial origin, i.e. elevated mitochondrial superoxide production, belongs to major factors determining aging and oxidative-stress-related diseases. Antioxidants, such as the mitochondria-targeted coenzyme Q, MitoQ10, may prevent or cure these pathological conditions. To elucidate pro- and anti-oxidant action of MitoQ10, we studied its effects on HepG2 cell respiration, mitochondrial network morphology, and rates of superoxide release (above that neutralized by superoxide dismutase) to the mitochondrial matrix (Jm). MitoSOX Red fluorescence confocal microscopy monitoring of Jm rates showed pro-oxidant effects of 3.5-fold increased Jm with MitoQ10. MitoQ10 induced fission of the mitochondrial network which was recovered after 24 h. In rotenone-inhibited HepG2 cells (i.e., already under oxidative stress) MitoQ10 sharply decreased rotenone-induced Jm, but not together with the Complex II inhibitor thenoyltrifluoroacetone. Respiration of HepG2 cells and isolated rat liver mitochondria with MitoQ10 increased independently of rotenone. The increase was prevented by thenoyltrifluoroacetone. These results suggest that MitoQ10 accepts electrons prior to the rotenone-bound Q-site, and the Complex II reverse mode oxidizes MitoQ10H2 to regenerate MitoQ10. Consequently, MitoQ10 has a pro-oxidant role in intact cells, whereas it serves as an antioxidant when Complex I-derived superoxide generation is already elevated due to electron flow retardation. Moreover, unlike mitochondrial uncoupling, MitoQ10 exerted its antioxidant role when Complex I proton pumping was retarded by a hydrophobic amiloride, 5-(N-ethyl-N-isopropyl) amiloride. Consequently, MitoQ10 may be useful in the treatment of diseases originating from impairment of respiratory chain Complex I due to oxidatively damaged mitochondrial DNA, when its targeted delivery to pathogenic tissues is ensured.  相似文献   
62.
Fourteen ferrocenyl aminohydroxynaphthoquinones, analogues of atovaquone, were synthesized from the hydroxynaphthoquinone core. These novel atovaquone derivatives were tested for their in vitro activity against two apicomplexan parasites of medical importance, Toxoplasma gondii and Plasmodium falciparum, including resistant strains to atovaquone (T. gondii) and chloroquine (P. falciparum). Three of these ferrocenic atovaquone derivatives composed of the hydroxynaphthoquinone core plus an amino-ferrocenic group and an aliphatic chain with 6-8 carbon atoms were found to be significantly active against T. gondii. Moreover, these novel compounds were also effective against the atovaquone-resistant strain of T. gondii (Ato(R)).  相似文献   
63.
Through their metabolic activities, microbial populations mediate the impact of high gradient regions on ecological function and productivity of the highly dynamic Columbia River coastal margin (CRCM). A 2226-probe oligonucleotide DNA microarray was developed to investigate expression patterns for microbial genes involved in nitrogen and carbon metabolism in the CRCM. Initial experiments with the environmental microarrays were directed toward validation of the platform and yielded high reproducibility in multiple tests. Bioinformatic and experimental validation also indicated that >85% of the microarray probes were specific for their corresponding target genes and for a few homologs within the same microbial family. The validated probe set was used to query gene expression responses by microbial assemblages to environmental variability. Sixty-four samples from the river, estuary, plume, and adjacent ocean were collected in different seasons and analyzed to correlate the measured variability in chemical, physical and biological water parameters to differences in global gene expression profiles. The method produced robust seasonal profiles corresponding to pre-freshet spring (April) and late summer (August). Overall relative gene expression was high in both seasons and was consistent with high microbial abundance measured by total RNA, heterotrophic bacterial production, and chlorophyll a. Both seasonal patterns involved large numbers of genes that were highly expressed relative to background, yet each produced very different gene expression profiles. April patterns revealed high differential gene expression in the coastal margin samples (estuary, plume and adjacent ocean) relative to freshwater, while little differential gene expression was observed along the river-to-ocean transition in August. Microbial gene expression profiles appeared to relate, in part, to seasonal differences in nutrient availability and potential resource competition. Furthermore, our results suggest that highly-active particle-attached microbiota in the Columbia River water column may perform dissimilatory nitrate reduction (both dentrification and DNRA) within anoxic particle microniches.  相似文献   
64.
Previous attempts to identify the membrane skeleton of Paramecium cells have revealed a protein pattern that is both complex and specific. The most prominent structural elements, epiplasmic scales, are centered around ciliary units and are closely apposed to the cytoplasmic side of the inner alveolar membrane. We sought to characterize epiplasmic scale proteins (epiplasmins) at the molecular level. PCR approaches enabled the cloning and sequencing of two closely related genes by amplifications of sequences from a macronuclear genomic library. Using these two genes (EPI-1 and EPI-2), we have contributed to the annotation of the Paramecium tetraurelia macronuclear genome and identified 39 additional (paralogous) sequences. Two orthologous sequences were found in the Tetrahymena thermophila genome. Structural analysis of the 43 sequences indicates that the hallmark of this new multigenic family is a 79 aa domain flanked by two Q-, P- and V-rich stretches of sequence that are much more variable in amino-acid composition. Such features clearly distinguish members of the multigenic family from epiplasmic proteins previously sequenced in other ciliates. The expression of Green Fluorescent Protein (GFP)-tagged epiplasmin showed significant labeling of epiplasmic scales as well as oral structures. We expect that the GFP construct described herein will prove to be a useful tool for comparative subcellular localization of different putative epiplasmins in Paramecium.  相似文献   
65.
Defects in genes encoding ribosomal proteins cause Diamond Blackfan Anemia (DBA), a red cell aplasia often associated with physical abnormalities. Other bone marrow failure syndromes have been attributed to defects in ribosomal components but the link between erythropoiesis and the ribosome remains to be fully defined. Several lines of evidence suggest that defects in ribosome synthesis lead to “ribosomal stress” with p53 activation and either cell cycle arrest or induction of apoptosis. Pathways independent of p53 have also been proposed to play a role in DBA pathogenesis.  相似文献   
66.
Vegetation History and Archaeobotany - Fuelling ancient Maya cities and industries has been identified for some time now as a critical concern for the pre-Columbian Maya, especially since there is...  相似文献   
67.
A single mitochondrial network in the cell undergoes constant fission and fusion primarily depending on the local GTP gradients and the mitochondrial energetics. Here we overview the main properties and regulation of pro-fusion and pro-fission mitodynamins, i.e. dynamins-related GTPases responsible for mitochondrial shape-forming, such as pro-fusion mitofusins MFN1, MFN2, and the inner membrane-residing long OPA1 isoforms, and pro-fission mitodynamins FIS1, MFF, and DRP1 multimers required for scission. Notably, the OPA1 cleavage into non-functional short isoforms at a diminished ATP level (collapsed membrane potential) and the DRP1 recruitment upon phosphorylation by various kinases are overviewed. Possible responses of mitodynamins to the oxidative stress, hypoxia, and concomitant mtDNA mutations are also discussed. We hypothesize that the increased GTP formation within the Krebs cycle followed by the GTP export via the ADP/ATP carrier shift the balance between fission and fusion towards fusion by activating the GTPase domain of OPA1 located in the peripheral intermembrane space (PIMS). Since the protein milieu of PIMS is kept at the prevailing oxidized redox potential by the TOM, MIA40 and ALR/Erv1 import-redox trapping system, redox regulations shift the protein environment of PIMS to a more reduced state due to the higher substrate load and increased respiration. A higher cytochrome c turnover rate may prevent electron transfer from ALR/Erv1 to cytochrome c. Nevertheless, the putative links between the mitodynamin responses, mitochondrial morphology and the changes in the mitochondrial bioenergetics, superoxide production, and hypoxia are yet to be elucidated, including the precise basis for signaling by the mitochondrion-derived vesicles.  相似文献   
68.
Extracellular ATP is a pro-inflammatory mediator involved in the release of prostaglandin from articular chondrocytes, but little is known about its effects on intracellular signaling. ATP triggered the rapid release of prostaglandin E(2) (PGE(2)) by acting on P2Y(2) receptors in rabbit articular chondrocytes. We have explored the signaling events involved in this synthesis. ATP significantly increased arachidonic acid production, which involved the activation of the 85-kDa cytosolic phospholipase A(2) (cPLA(2)) but not a secreted form of PLA(2), as demonstrated by various PLA(2) inhibitors and translocation experiments. We also showed that ATP induced the phosphorylation of p38 and ERK1/2 mitogen-activated-protein kinases (MAPKs). Both PD98059, an inhibitor of the ERK pathway, and SB203580, an inhibitor of p38 MAPK, completely inhibited the ATP-induced release of PGE(2). Finally, dominant-negative plasmids encoding p38 and ERK transfected alone into the cells impaired the ATP-induced release of PGE(2) to about the same extent as both plasmids transfected together. These results suggest that PGE(2) production induced by ATP requires the activation of both ERK1/2 and p38 MAPKs. Thus, ATP acts via P2Y(2)-purine receptors to recruit cPLA(2) by activating both ERK1/2 and p38 MAPKs and stimulates the release of PGE(2) from articular chondrocytes.  相似文献   
69.
70.
Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) are environmental carcinogens exhibiting potent immunosuppressive properties. To determine the cellular bases of this immunotoxicity, we have studied the effects of PAHs on differentiation, maturation, and function of monocyte-derived dendritic cells (DC). Exposure to BP during monocyte differentiation into DC upon the action of GM-CSF and IL-4 markedly inhibited the up-regulation of markers found in DC such as CD1a, CD80, and CD40, without altering cell viability. Besides BP, PAHs such as dimethylbenz(a)anthracene and benzanthracene also strongly altered CD1a levels. Moreover, DC generated in the presence of BP displayed decreased endocytic activity. Features of LPS-mediated maturation of DC, such as CD83 up-regulation and IL-12 secretion, were also impaired in response to BP treatment. BP-exposed DC poorly stimulated T cell proliferation in mixed leukocyte reactions compared with their untreated counterparts. In contrast to BP, the halogenated arylhydrocarbon 2,3,7,8-tetrachlorodibenzo-p-dioxin, which shares some features with PAHs, including interaction with the arylhydrocarbon receptor, failed to phenotypically alter differentiation of monocytes into DC, suggesting that binding to the arylhydrocarbon receptor cannot mimic PAH effects on DC. Overall, these data demonstrate that exposure to PAHs inhibits in vitro functional differentiation and maturation of blood monocyte-derived DC. Such an effect may contribute to the immunotoxicity of these environmental contaminants due to the major role that DC play as potent APC in the development of the immune response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号