首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   3篇
  60篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   11篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   5篇
  1996年   8篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
排序方式: 共有60条查询结果,搜索用时 8 毫秒
31.
A population of 169 microspore-derived doubled-haploid lines was produced from a highly polymorphic Brassica oleracea cross. A dense genetic linkage map of B. oleracea was then developed based on the segregation of 303 RFLP-defined loci. It is hoped that these lines will be used by other geneticists to facilitate the construction of a unified genetic map of B. oleracea. When the B. oleracea map was compared to one ofB. napus (Parkin et al. 1995), based on the same RFLP probes (Sharpe et al. 1995), good collinearity between the C-genome linkage groups of the two species was observed.  相似文献   
32.
33.
用RFLP标记分析甘蓝型油菜的遗传多样性   总被引:36,自引:2,他引:36  
孟金陵  钱秀珍 《遗传学报》1996,23(4):293-306
以甘蓝型油菜的28个基因组探针和两种限制性内切酶对包括46个中国品种、9个欧洲品种在内的59个甘蓝型油菜品种(系)的RFLP标记进行了分析。在放射自显影胶片上,共检测到410条具多态性的分子杂交带,表明甘蓝型油菜中存在着极为丰富的遗传变异。聚类分析结果表明,在相似性为45%的水平上,可把中国甘蓝型油菜划分为6组:胜利油菜组、跃进油菜组、中油821组、远缘种质组、优质油菜组和变异不详组。欧洲冬油菜与以上6组存在着较显著的遗传距离。主成分分析的结果与上述分组较为一致。以上结果表明,对于扩大中国甘蓝型油菜的遗传基础,欧洲冬油菜无疑是一个重要的种质资源。另一方面,用典型的中国甘蓝型油菜与欧洲冬油菜配制的杂交种,较易产生强大的杂种优势。从对已进行了染色体定位的61条放射自显影带的分析看,无论是上述分组内,还是分组间,RFLP的相对差异均主要表现在A基因组中。讨论了致使A基因组遗传变异较大的可能因素。  相似文献   
34.
35.
36.
Amphidiploid Brassica juncea contains conserved progenitor genomes.   总被引:9,自引:0,他引:9  
To perform a detailed study of genome evolution in the natural Brassica amphidiploid B. juncea, we have constructed two linkage maps based on RFLP (restriction fragment length polymorphism) markers; one generated from a cross between a resynthesized B. juncea (a chromosome doubled interspecific B. rapa x B. nigra hybrid) and a natural B. juncea cultivar, the other from a cross between two B. juncea cultivars. By using a common cultivar in both crosses, the two maps could be unambiguously integrated. All loci exhibited disomic inheritance of parental alleles in the natural x resynthesized cross, showing that B. rapa chromosomes paired exclusively with their A-genome homologues in B. juncea and that B. nigra chromosomes likewise paired with their B-genome homologues. The maps derived from the two crosses were also perfectly collinear. Furthermore, these maps were collinear with maps of the diploid progenitor species (B. nigra and B. rapa) produced using the same set of RFLP probes. These data indicate that the genome of B. juncea has remained essentially unchanged since polyploid formation. Our observations appear to refute the suggestion that the formation of polyploid genomes is accompanied by rapid change in genome structure.  相似文献   
37.
Patterns of genome duplication within the Brassica napus genome.   总被引:6,自引:0,他引:6  
The progenitor diploid genomes (A and C) of the amphidiploid Brassica napus are extensively duplicated with 73% of genomic clones detecting two or more duplicate sequences within each of the diploid genomes. This comprehensive duplication of loci is to be expected in a species that has evolved through a polyploid ancestor. The majority of the duplicate loci within each of the diploid genomes were found in distinct linkage groups as collinear blocks of linked loci, some of which had undergone a variety of rearrangements subsequent to duplication, including inversions and translocations. A number of identical rearrangements were observed in the two diploid genomes, suggesting they had occurred before the divergence of the two species. A number of linkage groups displayed an organization consistent with centric fusion and (or) fission, suggesting this mechanism may have played a role in the evolution of Brassica genomes. For almost every genetically mapped locus detected in the A genome a homologous locus was found in the C genome; the collinear arrangement of these homologous markers allowed the primary regions of homoeology between the two genomes to be identified. At least 16 gross chromosomal rearrangements differentiated the two diploid genomes during their divergence from a common ancestor.  相似文献   
38.
BACKGROUND: Improving our knowledge of plant metal metabolism is facilitated by the use of analytical techniques to map the distribution of elements in tissues. One such technique is X-ray fluorescence (XRF), which has been used previously to map metal distribution in both two and three dimensions. One of the difficulties of mapping metal distribution in two dimensions is that it can be difficult to normalize for tissue thickness. When mapping metal distribution in three dimensions, the time required to collect the data can become a major constraint. In this article a compromise is suggested between two- and three-dimensional mapping using multi-angle XRF imaging. METHODS: A synchrotron-based XRF microprobe was used to map the distribution of K, Ca, Mn, Fe, Ni, Cu and Zn in whole Arabidopsis thaliana seeds. Relative concentrations of each element were determined by measuring fluorescence emitted from a 10 microm excitation beam at 13 keV. XRF spectra were collected from an array of points with 25 or 30 microm steps. Maps were recorded at 0 and 90 degrees , or at 0, 60 and 120 degrees for each seed. Using these data, circular or ellipsoidal cross-sections were modelled, and from these an apparent pathlength for the excitation beam was calculated to normalize the data. Elemental distribution was mapped in seeds from ecotype Columbia-4 plants, as well as the metal accumulation mutants manganese accumulator 1 (man1) and nicotianamine synthetase (nasx). CONCLUSIONS: Multi-angle XRF imaging will be useful for mapping elemental distribution in plant tissues. It offers a compromise between two- and three-dimensional XRF mapping, as far as collection times, image resolution and ease of visualization. It is also complementary to other metal-mapping techniques. Mn, Fe and Cu had tissue-specific accumulation patterns. Metal accumulation patterns were different between seeds of the Col-4, man1 and nasx genotypes.  相似文献   
39.
40.
Common structural and amino acid motifs among cloned plant disease-resistance genes (R genes), have made it possible to identify putative disease-resistance sequences based on DNA sequence identity. Mapping of such R-gene homologues will identify candidate disease-resistance loci to expedite map-based cloning strategies in complex crop genomes. Arabidopsis thaliana expressed sequence tags (ESTs) with homology to cloned plant R genes (R-ESTs), were mapped in both A. thaliana and Brassica napus to identify candidate R-gene loci and investigate intergenomic collinearity. Brassica R-gene homologous sequences were also mapped in B. napus. In total, 103 R-EST loci and 36 Brassica R-gene homologous loci were positioned on the N-fo-61-9 B. napus genetic map, and 48 R-EST loci positioned on the Columbia x Landsberg A. thaliana map. The mapped loci identified collinear regions between Arabidopsis and Brassica which had been observed in previous comparative mapping studies; the detection of syntenic genomic regions indicated that there was no apparent rapid divergence of the identified genomic regions housing the R-EST loci.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号