首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1261篇
  免费   103篇
  2023年   6篇
  2022年   19篇
  2021年   32篇
  2020年   22篇
  2019年   34篇
  2018年   35篇
  2017年   29篇
  2016年   43篇
  2015年   83篇
  2014年   82篇
  2013年   108篇
  2012年   112篇
  2011年   96篇
  2010年   70篇
  2009年   55篇
  2008年   84篇
  2007年   71篇
  2006年   47篇
  2005年   50篇
  2004年   50篇
  2003年   43篇
  2002年   34篇
  2001年   8篇
  2000年   11篇
  1999年   6篇
  1998年   12篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1993年   7篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1988年   6篇
  1987年   8篇
  1986年   7篇
  1985年   6篇
  1984年   5篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1972年   2篇
  1970年   2篇
  1944年   3篇
  1936年   2篇
  1925年   4篇
  1924年   2篇
排序方式: 共有1364条查询结果,搜索用时 31 毫秒
91.
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a severe necrotizing skin disease that causes significant morbidity in Africa and Australia. Person-to-person transmission of Buruli ulcer is rare. Throughout Africa and Australia infection is associated with residence near slow-moving or stagnant water bodies. Although M. ulcerans DNA has been detected in over 30 taxa of invertebrates, fish, water filtrate, and plant materials and one environmental isolate cultured from a water strider (Gerridae), the invertebrate taxa identified are not adapted to feed on humans, and the mode of transmission for Buruli ulcer remains an enigma. Recent epidemiological reports from Australia describing the presence of M. ulcerans DNA in adult mosquitoes have led to the hypothesis that mosquitoes play an important role in the transmission of M. ulcerans. In this study we have investigated the potential of mosquitoes to serve as biological or mechanical vectors or as environmental reservoirs for M. ulcerans. Here we show that Aedes aegypti, A. albopictus, Ochlerotatus triseriatus, and Culex restuans larvae readily ingest wild-type M. ulcerans, isogenic toxin-negative mutants, and Mycobacterium marinum isolates and remain infected throughout larval development. However, the infections are not carried over into the pupae or adult mosquitoes, suggesting an unlikely role for mosquitoes as biological vectors. By following M. ulcerans through a food chain consisting of primary (mosquito larvae), secondary (predatory mosquito larva from Toxorhynchites rutilus septentrionalis), and tertiary (Belostoma species) consumers, we have shown that M. ulcerans can be productively maintained in an aquatic food web.Infection with Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU) disease, is associated with residence near stagnant and slow-moving water bodies in areas in which the disease is endemic (5, 36, 40, 45, 50). A plasmid-encoded macrolide toxin, mycolactone, is the primary virulence determinant of M. ulcerans (8, 41). Biting aquatic insects, such as several taxa in the Belostomatidae and Naucoridae families (Hemiptera), have been suggested as possible vectors of M. ulcerans in several laboratory experiments (16, 19, 20, 24, 31, 32); however, there is little empirical evidence from field studies to support the contention that these biting insects vector M. ulcerans to humans (2). In Melbourne, Australia, recent epidemiological evidence suggests that mosquitoes may serve as vectors in the transmission of BU disease (10, 11, 12, 34, 35). In this study, 957 pools consisting of over 11,000 mosquitoes of four different species were collected and tested by quantitative PCR (qPCR) for the presence of M. ulcerans DNA, and positive results were obtained from 48 of 957 pools tested (10). Of the 48 positive pools, 13 were positive for PCR directed against two insertion sequences (IS2404 and IS2606) as well as against sequence based on the ketoreductase domain of the mycolactone toxin genes. Because all of these target sequences are present multiple times in the genome, it was difficult to assign genome equivalents to these results. However, data from laboratory experiments suggested that 10 to 100 M. ulcerans isolates per mosquito were present in the positive pools. Epidemiological work also suggested a seasonal relationship between Buruli ulcer and mosquito-vectored diseases in Australia (12). These studies are extremely provocative and raise a number of questions for further work. What is the prevalence of M. ulcerans in other invertebrate taxa in the same environment? What is the infection rate in equal numbers of mosquitoes collected from areas in which the disease is not endemic? Is it possible to obtain physical evidence for the presence of M. ulcerans through microscopy or culture of mosquitoes in areas in which the disease is endemic, and, finally, what can we learn from laboratory studies concerning the interaction between mosquitoes and M. ulcerans?The recent work from Australia suggesting that M. ulcerans is spread by mosquitoes is particularly significant because adult mosquitoes are the most important group of insects in the spread of human disease. They may serve as biological vectors that provide a major environment for pathogen replication, as in malaria or yellow fever, or as mechanical vectors that carry organisms between hosts without serving as a site of replication (1, 4, 7, 9, 38). Larval mosquitoes are common in habitats associated with BU disease, most notably lentic or standing water habitats, and feed by filtering particles in the water using labral head fans (21). Members of some genera (i.e., Anopheles) aggregate at the air-water interface in microlayers near plant stems and algal mats (27, 28, 46), where they feed on microorganisms such as bacteria and algae (47). Because of their collecting-filtering feeding mode, there is potential for larvae to consume M. ulcerans and concentrate mycobacteria through their feeding activities (22, 23).In Ghana, the occurrence of M. ulcerans among invertebrate communities in lentic habitats has been documented from regions in Ga West and Ga East Districts in which the disease is endemic as well as those in which it is not endemic (2, 49) but not in geographically distinct areas in which the disease is not endemic such as the Volta region (49). M. ulcerans has been identified in a suite of environmental samples such as filtered water, biofilms, and algae as well as among a broad spectrum of invertebrate taxa, including both larval and adult mosquitoes (2, 11, 17, 49). However, the replication and trophic movement of M. ulcerans within these environmental samples and invertebrate communities have not been experimentally investigated. Conceptual models have been proposed that assume that the primary consumers of M. ulcerans (e.g., mosquito larvae, cladocerans, and chironomid larvae) may feed on bacteria and algae in biofilms, filter suspended matter from the water column, and then initiate the passage of M. ulcerans through an aquatic food web (2, 22, 31). This model predicts the movement of M. ulcerans through secondary and tertiary consumers and implies a complex trophic relationship in the ecology of M. ulcerans as well as an important role of aquatic invertebrates in the disease ecology of M. ulcerans.In the studies reported here, we have explored the role of mosquitoes as biological or mechanical vectors of M. ulcerans, as well as the potential of mosquito larvae to play a central role in the movement of M. ulcerans through an aquatic food web. In order to investigate the ability of mosquito larvae to ingest and maintain M. ulcerans within their digestive tract as well as to persist throughout the mosquito development cycle, we took advantage of the fact that mosquito larvae naturally feed upon bacteria. Results presented here show that strains of M. ulcerans from Africa and Australia, as well as Mycobacterium marinum, were maintained at high levels in the larval mosquito gut for 6 days. However, neither M. ulcerans nor M. marinum was detected in adult mosquitoes that were infected in the larval stage. These results suggest that mosquitoes are unlikely to serve as biological vectors of M. ulcerans.We further developed a model for following the passage of M. ulcerans through a series of consumers to determine whether M. ulcerans could be passed up a trophic chain from primary to tertiary consumers. In this model, we conducted similar experiments using four species of nonpredatory mosquito larvae, Aedes aegypti (Linnaeus), Aedes albopictus (Skuse), Ochlerotatus triseriatus (Theobald), and Culex restuans (Theobald), as primary consumers. These larvae were infected with isogenic wild-type (WT) and toxin-negative isolates of M. ulcerans and of M. marinum, the closest relative to M. ulcerans (13, 14, 51). We have shown that M. ulcerans in mosquito larvae survive passage through secondary and tertiary consumers, thus providing the first laboratory evidence that M. ulcerans has the potential to move between and be maintained within different species in an aquatic food web.  相似文献   
92.
A method was developed to determine the contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to the nitrification potentials (NPs) of soils taken from forest, pasture, cropped, and fallowed (19 years) lands. Soil slurries were exposed to acetylene to irreversibly inactivate ammonia monooxygenase, and upon the removal of acetylene, the recovery of nitrification potential (RNP) was monitored in the presence and absence of bacterial or eukaryotic protein synthesis inhibitors. For unknown reasons, and despite measureable NPs, RNP did not occur consistently in forest soil samples; however, pasture, cropped, and fallowed soil RNPs commenced after lags that ranged from 12 to 30 h after acetylene removal. Cropped soil RNP was completely prevented by the bacterial protein synthesis inhibitor kanamycin (800 μg/ml), whereas a combination of kanamycin plus gentamicin (800 μg/ml each) only partially prevented the RNP (60%) of fallowed soils. Pasture soil RNP was completely insensitive to either kanamycin, gentamicin, or a combination of the two. Unlike cropped soil, pasture and fallowed soil RNPs occurred at both 30°C and 40°C and without supplemental NH(4)(+) (≤ 10 μM NH(4)(+) in solution), and pasture soil RNP demonstrated ~ 50% insensitivity to 100 μM allyl thiourea (ATU). In addition, fallowed and pasture soil RNPs were insensitive to the fungal inhibitors nystatin and azoxystrobin. This combination of properties suggests that neither fungi nor AOB contributed to pasture soil RNP and that AOA were responsible for the RNP of the pasture soils. Both AOA and AOB may contribute to RNP in fallowed soil, while RNP in cropped soils was dominated by AOB.  相似文献   
93.
When considering all trees irrespective of their species, natural tropical rain forests typically exhibit spatial patterns that range from random to regular. The regularity is often interpreted as a footprint of tree competition. Using 23 permanent sample plots totalling 61 ha in the rain forests of central Africa, we characterized their spatial patterns and modelled those that exhibited regularity by a Strauss point process. This Strauss process is obtained as a Markov point process whose interaction function is an exponential function of a competition index commonly used in forestry. The parameter of this Strauss process characterizes the strength of competition. The 23 plots in central Africa differed in tree density and basal area, and could be discriminated depending on the type of spatial patterns: plots having a large basal area with respect to their density had a non regular pattern, whereas those having a small basal area with respect to their density had a regular pattern. For those plots that exhibited regularity, average tree size could be used to predict the strength of competition. The parameter of the Strauss process was significantly related to the average size by a linear relationship, such that competition decreases as average tree size increases. This relationship extrapolated to a null value of the Strauss parameter when average tree size reaches 32 cm in diameter. This relationship between average tree size and spatial pattern is a testable feature for future studies on the relationship between competition and spatial pattern in natural forests.  相似文献   
94.

Background

Many proteins undergo extensive conformational changes as part of their functionality. Tracing these changes is important for understanding the way these proteins function. Traditional biophysics-based conformational search methods require a large number of calculations and are hard to apply to large-scale conformational motions.

Results

In this work we investigate the application of a robotics-inspired method, using backbone and limited side chain representation and a coarse grained energy function to trace large-scale conformational motions. We tested the algorithm on four well known medium to large proteins and we show that even with relatively little information we are able to trace low-energy conformational pathways efficiently. The conformational pathways produced by our methods can be further filtered and refined to produce more useful information on the way proteins function under physiological conditions.

Conclusions

The proposed method effectively captures large-scale conformational changes and produces pathways that are consistent with experimental data and other computational studies. The method represents an important first step towards a larger scale modeling of more complex biological systems.
  相似文献   
95.
96.
97.
Members of the superfamily of protein tyrosine phosphatases (PTPs) share the presence of an evolutionarily conserved PTP catalytic domain. Among them, the dual-specificity phosphatases (DSPs) constitute a diverse group of enzymes in terms of substrate specificity, including nonprotein substrates. In recent years, an increasing number of novel DSPs, whose functions and biological substrates are not well defined, have been discovered in a variety of organisms. In this study, we define the structural and functional properties of evolutionarily related atypical DSPs from different phyla. Sets of conserved motifs were defined that (i) uniquely segregated mammalian atypical DSPs from closely related enzymes and (ii) exclusively characterised a novel family of atypical DSPs present in plants, fungi, and kinetoplastids [plant and fungi atypical (PFA)-DSPs]; despite having different sequence “fingerprints,” the PTP tertiary structure of PFA-DSPs is conserved. Analysis of the catalytic properties of PFA-DSPs suggests the existence of a unique substrate specificity for these enzymes. Our findings predict characteristic functional motifs for the diverse members of the DSP families of PTPs and provide insights into the functional properties of DSPs of unknown function.  相似文献   
98.
Cytoplasmic RNA granules serve key functions in the control of messenger RNA (mRNA) fate in eukaryotic cells. For instance, in yeast, severe stress induces mRNA relocalization to sites of degradation or storage called processing bodies (P-bodies). In this study, we show that the translation repression associated with glucose starvation causes the key translational mediators of mRNA recognition, eIF4E, eIF4G, and Pab1p, to resediment away from ribosomal fractions. These mediators then accumulate in P-bodies and in previously unrecognized cytoplasmic bodies, which we define as EGP-bodies. Our kinetic studies highlight the fundamental difference between EGP- and P-bodies and reflect the complex dynamics surrounding reconfiguration of the mRNA pool under stress conditions. An absence of key mRNA decay factors from EGP-bodies points toward an mRNA storage function for these bodies. Overall, this study highlights new potential control points in both the regulation of mRNA fate and the global control of translation initiation.  相似文献   
99.
Bacterial pathogens have developed sophisticated mechanisms of evading the immune system to survive in infected host cells. Central to the pathogenesis of Mycobacterium tuberculosis is the arrest of phagosome maturation, partly through interference with PtdIns signalling. The protein phosphatase MptpB is an essential secreted virulence factor in M. tuberculosis. A combination of bioinformatics analysis, enzyme kinetics and substrate-specificity characterization revealed that MptpB exhibits both dual-specificity protein phosphatase activity and, importantly, phosphoinositide phosphatase activity. Mutagenesis of conserved residues in the active site signature indicates a cysteine-based mechanism of dephosphorylation and identifies two new catalytic residues, Asp165, essential in catalysis, and Lys164, apparently involved in substrate specificity. Sequence similarities with mammalian lipid phosphatases and a preference for phosphoinositide substrates suggests a potential novel role of MptpB in PtdIns metabolism in the host and reveals new perspectives for the role of this phosphatase in mycobacteria pathogenicity.  相似文献   
100.
The relationship between stress and obesity remains elusive. In response to stress, some people lose weight, whereas others gain. Here we report that stress exaggerates diet-induced obesity through a peripheral mechanism in the abdominal white adipose tissue that is mediated by neuropeptide Y (NPY). Stressors such as exposure to cold or aggression lead to the release of NPY from sympathetic nerves, which in turn upregulates NPY and its Y2 receptors (NPY2R) in a glucocorticoid-dependent manner in the abdominal fat. This positive feedback response by NPY leads to the growth of abdominal fat. Release of NPY and activation of NPY2R stimulates fat angiogenesis, macrophage infiltration, and the proliferation and differentiation of new adipocytes, resulting in abdominal obesity and a metabolic syndrome-like condition. NPY, like stress, stimulates mouse and human fat growth, whereas pharmacological inhibition or fat-targeted knockdown of NPY2R is anti-angiogenic and anti-adipogenic, while reducing abdominal obesity and metabolic abnormalities. Thus, manipulations of NPY2R activity within fat tissue offer new ways to remodel fat and treat obesity and metabolic syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号