首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1318篇
  免费   106篇
  2023年   5篇
  2022年   16篇
  2021年   34篇
  2020年   22篇
  2019年   35篇
  2018年   36篇
  2017年   29篇
  2016年   43篇
  2015年   83篇
  2014年   84篇
  2013年   109篇
  2012年   117篇
  2011年   100篇
  2010年   71篇
  2009年   56篇
  2008年   84篇
  2007年   73篇
  2006年   49篇
  2005年   54篇
  2004年   54篇
  2003年   44篇
  2002年   36篇
  2001年   14篇
  2000年   13篇
  1999年   8篇
  1998年   15篇
  1997年   5篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   8篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1988年   5篇
  1987年   9篇
  1986年   8篇
  1985年   5篇
  1984年   8篇
  1982年   11篇
  1981年   3篇
  1980年   4篇
  1978年   4篇
  1976年   3篇
  1970年   4篇
  1966年   2篇
  1944年   3篇
  1936年   2篇
  1925年   4篇
  1924年   2篇
排序方式: 共有1424条查询结果,搜索用时 792 毫秒
131.
A series of ligands with varying heterocyclic cores and substituents that display a range of selectivity’s (up to >100x) for ER-β over ER- are reported.  相似文献   
132.
Formation of the head organizer in hydra involves the canonical Wnt pathway   总被引:6,自引:0,他引:6  
Stabilization of beta-catenin by inhibiting the activity of glycogen synthase kinase-3beta has been shown to initiate axis formation or axial patterning processes in many bilaterians. In hydra, the head organizer is located in the hypostome, the apical portion of the head. Treatment of hydra with alsterpaullone, a specific inhibitor of glycogen synthase kinase-3beta, results in the body column acquiring characteristics of the head organizer, as measured by transplantation experiments, and by the expression of genes associated with the head organizer. Hence, the role of the canonical Wnt pathway for the initiation of axis formation was established early in metazoan evolution.  相似文献   
133.
Cryotherapy, an efficient technique to destroy tumour cells, is sometimes applied locally as a palliative treatment in lung cancers. It can be performed in combination with chemotherapy. Our aims were to determine in vivo: (1) the effects of cryochemotherapy in a human lung adenocarcinoma, (2) if it presents a benefit compared to the separate treatments and (3) if cryotherapy allows a tumour retention of the drug. Cells from the A549 cell line were xenografted into SCID mice. Tumours were treated by cryotherapy, chemotherapy (injection of Vinorelbine: Navelbine) or both and were studied morphologically at variable time points. Apoptosis was analysed by immunohistochemical staining of cleaved caspase-3 and by TUNEL. Intratumour Navelbine concentration was assessed by high performance liquid chromatography. Necrosis was important 2 h after cryochemotherapy (45% of the tumour surface) and at the later time points. Expression of cleaved caspase-3 was not significantly different from that of untreated tumours, except at the time point of 2 h where it was maximal (58%). Navelbine concentration was more important in tumours treated by chemotherapy than in tumours treated by cryochemotherapy, demonstrating that in our model, the benefit of the association observed 2h after treatment was not due to a concentration-dependent effect.  相似文献   
134.
Many lines of evidence suggest that oxidative stress resulting in reactive oxygen species (ROS) generation and inflammation play a pivotal role in the age-associated cognitive decline and neuronal loss in neurodegenerative diseases including Alzheimer's (AD), Parkinson's (PD) and Huntington's diseases. One cardinal chemical pathology observed in these disorders is the accumulation of iron at sites where the neurons die. The buildup of an iron gradient in conjunction with ROS (superoxide, hydroxyl radical and nitric oxide) are thought to constitute a major trigger in neuronal toxicity and demise in all these diseases. Thus, promising future treatment of neurodegenerative diseases and aging depends on availability of effective brain permeable, iron-chelatable/radical scavenger neuroprotective drugs that would prevent the progression of neurodegeneration. Tea flavonoids (catechins) have been reported to possess potent iron-chelating, radical-scavenging and anti-inflammatory activities and to protect neuronal death in a wide array of cellular and animal models of neurological diseases. Recent studies have indicated that in addition to the known antioxidant activity of catechins, other mechanisms such as modulation of signal transduction pathways, cell survival/death genes and mitochondrial function, contribute significantly to the induction of cell viability. This review will focus on the multifunctional properties of green tea and its major component (-)-epigallocatechin-3-gallate (EGCG) and their ability to induce neuroprotection and neurorescue in vitro and in vivo. In particular, their transitional metal (iron and copper) chelating property and inhibition of oxidative stress.  相似文献   
135.
Bellik L  Ledda F  Parenti A 《FEBS letters》2005,579(12):2731-2736
The exact phenotype and lineage of endothelial progenitor cells (EPCs) are still a matter of debate and different expansion protocols are used to obtain them. In this study, EPC expansion from peripheral blood mononuclear cells was analyzed within the first week of culture. Both the adherent and suspended cells, of which the latter usually discarded, were considered. We provide, for the first time, a systematic study of EPC phenotype and functional features within the first 3 days of culture. Moreover, within the 2nd day, both cellular fractions displayed a significant increase in endothelial marker expression which correlated with EPC properties.  相似文献   
136.
The NOD mouse is an important experimental model for human type 1 diabetes. T cells are central to NOD pathogenesis, and their function in the autoimmune process of diabetes has been well studied. In contrast, although recognized as important players in disease induction, the role of B cells is not clearly understood. In this study we characterize different subpopulations of B cells and demonstrate that marginal zone (MZ) B cells are expanded 2- to 3-fold in NOD mice compared with nondiabetic C57BL/6 (B6) mice. The NOD MZ B cells displayed a normal surface marker profile and localized to the MZ region in the NOD spleen. Moreover, the MZ B cell population developed early during the ontogeny of NOD mice. By 3 wk of age, around the time when autoreactive T cells are first activated, a significant MZ B cell population of adult phenotype was found in NOD, but not B6, mice. Using an F2(B6 x NOD) cross in a genome-wide scan, we map the control of this trait to a region on chromosome 4 (logarithm of odds score, 4.4) which includes the Idd11 and Idd9 diabetes susceptibility loci, supporting the hypothesis that this B cell trait is related to the development of diabetes in the NOD mouse.  相似文献   
137.
The present study examines how the circadian oscillators in the retina and the suprachiasmatic nucleus (SCN) respond to changes in photoperiod. Arylalkylamine N-acetyltransferase (aa-nat) gene expression studied by quantitative RT-PCR revealed that in adult Sprague-Dawley rats kept under different light-dark (LD) cycles for two weeks the temporal pattern of AA-NAT mRNA expression was identical in retina and pineal gland. In both tissues, the time span between the onset of darkness and the nocturnal rise in AA-NAT mRNA expression was 3 h under LD 20:4, 6 h under LD 12:12, and 15 h under LD 4:20. As aa-nat expression in the pineal gland is regulated by the circadian oscillator in SCN, the results suggest that the photoperiodic differences accompanying the seasons of the year are imprinted in more than one oscillator and that this may accentuate the important message regarding 'time of year.'  相似文献   
138.
CD200Fc, a chimeric molecule including the extracellular domain of CD200 and a murine IgG2a Fc region, regulates immune responses following engagement of a cell surface receptor, CD200R, expressed on cells of the myeloid and T cell lineage. A recent report focused attention on a family of CD200Rs, but concluded that only one member used CD200 as its ligand. We have also cloned and sequenced a family of CD200Rs, but identify an amino terminus to two of the three isoforms not recognized by previous researchers. We show by FACS, using FITC-labeled CD200Fc, that COS7 cells transfected with all CD200R isoforms bind CD200 as ligand, although the functional consequences of this binding likely differs between the different isoforms. mAbs directed against the CD200 R1/R4 isoforms altered IL-2/IL-4 cytokine production and suppressed CTL responses in a fashion comparable to CD200Fc, with a significantly lesser effect seen following addition of anti-CD200 R2/R3.  相似文献   
139.
140.
Controlling glycosylation of recombinant proteins produced by CHO cells is highly desired as it can be directed towards maintaining or increasing product quality. To further our understanding of the different factors influencing glycosylation, a glycosylation sub‐array of 79 genes and a capillary electrophoresis method which simultaneously analyzes 12 nucleotides and 7 nucleotide sugars; were used to generate intracellular N‐glycosylation profiles. Specifically, the effects of nucleotide sugar precursor feeding on intracellular glycosylation activities were analyzed in CHO cells producing recombinant human interferon‐γ (IFN‐γ). Galactose (±uridine), glucosamine (±uridine), and N‐acetylmannosamine (ManNAc) (±cytidine) feeding resulted in 12%, 28%, and 32% increase in IFN‐γ sialylation as compared to the untreated control cultures. This could be directly attributed to increases in nucleotide sugar substrates, UDP‐Hex (~20‐fold), UDP‐HexNAc (6‐ to 15‐fold) and CMP‐sialic acid (30‐ to 120‐fold), respectively. Up‐regulation of B4gal and St3gal could also have enhanced glycan addition onto the proteins, leading to more complete glycosylation (sialylation). Combined feeding of glucosamine + uridine and ManNAc + cytidine increased UDP‐HexNAc and CMP‐sialic acid by another two‐ to fourfold as compared to feeding sugar precursors alone. However, it did not lead to a synergistic increase in IFN‐γ sialylation. Other factors such as glycosyltransferase or glycan substrate levels could have become limiting. In addition, uridine feeding increased the levels of uridine‐ and cytidine‐activated nucleotide sugars simultaneously, which could imply that uridine is one of the limiting substrates for nucleotide sugar synthesis in the study. Hence, the characterization of intracellular glycosylation activities has increased our understanding of how nucleotide sugar precursor feeding influence glycosylation of recombinant proteins produced in CHO cells. It has also led to the optimization of more effective strategies for manipulating glycan quality. Biotechnol. Bioeng. 2010;107: 321–336. © 2010 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号