首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   10篇
  国内免费   2篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   4篇
  2019年   3篇
  2018年   8篇
  2017年   5篇
  2016年   7篇
  2015年   11篇
  2014年   10篇
  2013年   16篇
  2012年   19篇
  2011年   13篇
  2010年   12篇
  2009年   6篇
  2008年   13篇
  2007年   11篇
  2006年   8篇
  2005年   9篇
  2004年   2篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1995年   2篇
  1993年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
排序方式: 共有194条查询结果,搜索用时 437 毫秒
91.

Introduction

Accumulating data implicate the CD4+ T cell subset (Th17 cells) in rheumatoid arthritis (RA). IL-17 is an inflammatory cytokine that induces tumor necrosis factor (TNF)α, IL-1β and IL-6, all of which are targets of biologic therapies used to treat RA. RA patients are well documented to experience more infections than age-matched controls, and biologic therapies further increase the risk of infection. The Th17/IL-17 axis is vital for immunity to fungi, especially the commensal fungus Candida albicans. Therefore, we were prompted to examine the relationship between RA and susceptibility to C. albicans because of the increasing interest in Th17 cells and IL-17 in driving autoimmunity, and the advent of new biologics that target this pathway.

Methods

We analyzed peripheral blood and saliva from 48 RA and 33 healthy control subjects. To assess C. albicans-specific Th17 responses, PBMCs were co-cultured with heat-killed C. albicans extract, and IL-17A levels in conditioned supernatants were measured by ELISA. The frequency of Th17 and Th1 cells was determined by flow cytometry. As a measure of IL-17A-mediated effector responses, we evaluated C. albicans colonization rates in the oral cavity, salivary fungicidal activity and levels of the antimicrobial peptide β-defensin 2 (BD2) in saliva.

Results

Compared to controls, PBMCs from RA subjects exhibited elevated baseline production of IL-17A (P = 0.004), although they had similar capacity to produce IL-17A in response to Th17 cell differentiating cytokines (P = 0.91). However RA PBMCs secreted less IL-17A in response to C. albicans antigens (P = 0.006). Significantly more RA patients were colonized with C. albicans in the oral cavity than healthy subjects (P = 0.02). Concomitantly, RA saliva had reduced concentrations of salivary BD2 (P = 0.02). Nonetheless, salivary fungicidal activity was preserved in RA subjects (P = 0.70).

Conclusions

RA subjects exhibit detectable impairments in oral immune responses to C. albicans, a strongly Th17-dependent opportunistic pathogen, despite an overall elevated baseline production of IL-17A.  相似文献   
92.
A comprehensive, geometrically accurate, nonlinear C0-C7 FE model of head and cervical spine based on the actual geometry of a human cadaver specimen was developed. The motions of each cervical vertebral level under pure moment loading of 1.0 Nm applied incrementally on the skull to simulate the movements of the head and cervical spine under flexion, tension, axial rotation and lateral bending with the inferior surface of the C7 vertebral body fully constrained were analysed. The predicted range of motion (ROM) for each motion segment were computed and compared with published experimental data. The model predicted the nonlinear moment-rotation relationship of human cervical spine. Under the same loading magnitude, the model predicted the largest rotation in extension, followed by flexion and axial rotation, and least ROM in lateral bending. The upper cervical spines are more flexible than the lower cervical levels. The motions of the two uppermost motion segments account for half (or even higher) of the whole cervical spine motion under rotational loadings. The differences in the ROMs among the lower cervical spines (C3-C7) were relatively small. The FE predicted segmental motions effectively reflect the behavior of human cervical spine and were in agreement with the experimental data. The C0-C7 FE model offers potentials for biomedical and injury studies.  相似文献   
93.
Croton alabamensis (Euphorbiaceae s.s.) is a rare plant species known from several populations in Texas and Alabama that have been assigned to var. texensis and var. alabamensis, respectively. We performed maximum parsimony, maximum likelihood, and Bayesian analyses of DNA sequences from the nuclear ribosomal internal transcribed spacer (ITS) and 5.8S regions and chloroplast trnL-trnF regions from collections of the two varieties of C. alabamensis and from outgroup taxa. C. alabamensis emerges alone on a long branch that is sister to Croton section Corylocroton and the Cuban endemic genus Moacroton. Molecular clock analysis estimates the split of C. alabamensis from its closest relatives in sect. Corylocroton at 41 million years ago, whereas the split of the two varieties of C. alabamensis occurred sometime in the Quaternary. Amplified fragment length polymorphism (AFLP) analyses were performed using two selective primer pairs on a larger sampling of accessions (22 from Texas, 17 from Alabama) to further discriminate phylogenetic structure and quantify genetic diversity. Using both neighbour joining and minimum evolution, the populations from the Cahaba and Black Warrior watersheds in Alabama form two well-separated groups, and in Texas, geographically distinct populations are recovered from Fort Hood, Balcones Canyonlands, and Pace Bend Park. Most of the molecular variance is accounted for by variance within populations. Approximately equal variance is found among populations within states and between states (varieties). Genetic distance between the Texas populations is significantly less than genetic distance between the Alabama populations. Both sequence and AFLP data support the same relationships between the varieties of C. alabamensis and their outgroup, while the AFLP data provide better resolution among the different geographical regions where C. alabamensis occurs. The conservation implications of these findings are discussed.  相似文献   
94.
Disruptions in the regulatory pathways controlling sex determination and differentiation can cause disorders of sex development, often compromising reproductive function. Although extensive efforts have been channeled into elucidating the regulatory mechanisms controlling the many aspects of sexual differentiation, the majority of disorders of sex development phenotypes are still unexplained at the molecular level. In this study, we have analyzed the potential involvement of Wnt5a in sexual development and show in mice that Wnt5a is male-specifically upregulated within testicular interstitial cells at the onset of gonad differentiation. Homozygous deletion of Wnt5a affected sexual development in male mice, causing testicular hypoplasia and bilateral cryptorchidism despite the Leydig cells producing factors such as Hsd3b1 and Insl3. Additionally, Wnt5a-null embryos of both sexes showed a significant reduction in gonadal germ cell numbers, which was caused by aberrant primordial germ cell migration along the hindgut endoderm prior to gonadal colonization. Our results indicate multiple roles for Wnt5a during mammalian reproductive development and help to clarify further the etiology of Robinow syndrome (OMIM 268310), a disease previously linked to the WNT5A pathway.  相似文献   
95.
Immobilization is a key technology for successful realization of enzyme‐based industrial processes, particularly for production of green and sustainable energy or chemicals from biomass‐derived catalytic conversion. Different methods to immobilize enzymes are critically reviewed. In principle, enzymes are immobilized via three major routes (i) binding to a support, (ii) encapsulation or entrapment, or (iii) cross‐linking (carrier free). As a result, immobilizing enzymes on certain supports can enhance storage and operational stability. In addition, recent breakthroughs in nano and hybrid technology have made various materials more affordable hosts for enzyme immobilization. This review discusses different approaches to improve enzyme stability in various materials such as nanoparticles, nanofibers, mesoporous materials, sol–gel silica, and alginate‐based microspheres. The advantages of stabilized enzyme systems are from its simple separation and ease recovery for reuse, while maintaining activity and selectivity. This review also considers the latest studies conducted on different enzymes immobilized on various support materials with immense potential for biosensor, antibiotic production, food industry, biodiesel production, and bioremediation, because stabilized enzyme systems are expected to be environmental friendly, inexpensive, and easy to use for enzyme‐based industrial applications.  相似文献   
96.
Fusarium wilt of banana is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). The fact that there are no economically viable biological, chemical, or cultural measures of controlling the disease in an infected field leads to search for alternative strategies involving activation of the plant's innate defense system. The mechanisms underlying systemic acquired resistance (SAR) are much less understood in monocots than in dicots. Since systemic protection of plants by attenuated or avirulent pathogens is a typical SAR response, the establishment of a biologically induced SAR model in banana is helpful to investigate the mechanism of SAR to Fusarium wilt. This paper described one such model using incompatible Foc race 1 to induce resistance against Foc tropical race 4 in an in vitro pathosystem. Consistent with the observation that the SAR provided the highest level of protection when the time interval between primary infection and challenge inoculation was 10 d, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7), polyphenol oxidase (PPO, EC 1.14.18.1), and superoxide dismutase (SOD, EC 1.15.1.1) in systemic tissues also reached the maximum level and were 2.00–2.43 times higher than that of the corresponding controls on the tenth day. The total salicylic acid (SA) content in roots of banana plantlets increased from about 1 to more than 5 μg g−1 FW after the second leaf being inoculated with Foc race 1. The systemic up-regulation of MaNPR1A and MaNPR1B was followed by the second up-regulation of PR-1 and PR-3. Although SA and jasmonic acid (JA)/ethylene (ET) signaling are mostly antagonistic, systemic expression of PR genes regulated by different signaling pathways were simultaneously up-regulated after primary infection, indicating that both pathways are involved in the activation of the SAR.  相似文献   
97.
98.
99.
100.
Su EW  Bi S  Kane LP 《Glycobiology》2011,21(10):1258-1265
β-Galactoside-binding lectin 9 (galectin-9) is a tandem repeat-type member of the galectin family. It was initially characterized as an eosinophil chemoattractant and an inducer of apoptosis in thymocytes. Subsequently, galectin-9 was identified as a ligand for transmembrane immunoglobulin mucin domain 3 (Tim-3), a type I glycoprotein induced on T cells during chronic inflammation. Work in autoimmune diseases and chronic viral infections have led to the current hypothesis that the function of Tim-3 is to limit immune responses. However, it is still not known to what degree these effects are due to the galectin-9/Tim-3 interaction. In this study, we show that galectin-9 is not limited to the role of a pro-apoptotic agent, but that it can also induce the production of pro-inflammatory cytokines from T helper cells. This effect is dose-dependent and does not require Tim-3. These findings suggest that the effects of galectin-9 on T cells are more complex than previously thought and are mediated by additional receptors apart from Tim-3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号