首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   38篇
  2023年   3篇
  2022年   5篇
  2021年   18篇
  2020年   5篇
  2019年   9篇
  2018年   10篇
  2017年   6篇
  2016年   15篇
  2015年   37篇
  2014年   27篇
  2013年   29篇
  2012年   34篇
  2011年   51篇
  2010年   27篇
  2009年   22篇
  2008年   28篇
  2007年   17篇
  2006年   13篇
  2005年   10篇
  2004年   25篇
  2003年   17篇
  2002年   16篇
  2001年   4篇
  2000年   10篇
  1999年   8篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   6篇
  1987年   1篇
  1985年   4篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有477条查询结果,搜索用时 93 毫秒
51.
Verstreken P  Ly CV  Venken KJ  Koh TW  Zhou Y  Bellen HJ 《Neuron》2005,47(3):365-378
In a forward screen for genes affecting neurotransmission in Drosophila, we identified mutations in dynamin-related protein (drp1). DRP1 is required for proper cellular distribution of mitochondria, and in mutant neurons, mitochondria are largely absent from synapses, thus providing a genetic tool to assess the role of mitochondria at synapses. Although resting Ca2+ is elevated at drp1 NMJs, basal synaptic properties are barely affected. However, during intense stimulation, mutants fail to maintain normal neurotransmission. Surprisingly, FM1-43 labeling indicates normal exo- and endocytosis, but a specific inability to mobilize reserve pool vesicles, which is partially rescued by exogenous ATP. Using a variety of drugs, we provide evidence that reserve pool recruitment depends on mitochondrial ATP production downstream of PKA signaling and that mitochondrial ATP limits myosin-propelled mobilization of reserve pool vesicles. Our data suggest a specific role for mitochondria in regulating synaptic strength.  相似文献   
52.
Porin isoform 1 or VDAC (voltage-dependent anion-selective channel) 1 is the predominant protein in the outer mitochondrial membrane. We demonstrated previously that a plasma membrane NADH-ferricyanide reductase activity becomes up-regulated upon mitochondrial perturbation, and therefore suggested that it functions as a cellular redox sensor. VDAC1 is known to be expressed in the plasma membrane; however, its function there remained a mystery. Here we show that VDAC1, when expressed in the plasma membrane, functions as a NADH-ferricyanide reductase. VDAC1 preparations purified from both plasma membrane and mitochondria fractions exhibit NADH-ferricyanide reductase activity, which can be immunoprecipitated with poly- and monoclonal antibodies directed against VDAC(1). Transfecting cells with pl-VDAC1-GFP, which carries an N-terminal signal peptide, directs VDAC1 to the plasma membrane, as shown by confocal microscopy and FACS analysis, and significantly increases the plasma membrane NADH-ferricyanide reductase activity of the transfected cells. This novel enzymatic activity of the well known VDAC1 molecule may provide an explanation for its role in the plasma membrane. Our data suggest that a major function of VDAC1 in the plasma membrane is that of a NADH(-ferricyanide) reductase that may be involved in the maintenance of cellular redox homeostasis.  相似文献   
53.
Mycobacterium tuberculosis (MTb) is the leading cause of death in the setting of AIDS. MTb enhances the pathogenicity and accelerates the course of HIV disease and, furthermore, infection with HIV-1 increases the risk of reactivation or reinfection with MTb. In this study, we show that host-specific recall responses to one pathogen, MTb, has a direct effect upon the regulation of a second pathogen, HIV-1. Using cells from immunocompetent former tuberculosis (TB) patients who displayed either a persistently positive (responsive) or negative (anergic), delayed-type hypersensitivity (DTH) reaction to intradermal injection of purified protein derivative (PPD), we investigated the effect of recall Ags to MTb upon the replication of HIV-1 primary isolates in vitro. We show that HIV-1 replication of a T cell-tropic isolate was significantly impaired in MTb-stimulated PBMC from PPD-anergic donors. Furthermore, these donors displayed a significant increase in CD8(+) T cells and IL-10 levels and lower levels of IL-2 and TNF-alpha relative to PPD-responsive donors in response to PPD stimulation. Strikingly, CD8(+) T cell depletion and blocking of IL-10 significantly increased HIV-1 replication in these PPD-anergic donors, indicating that an immunosuppressive response to MTb recall Ags inhibits HIV-1 replication in PPD-anergic individuals. Therefore, immunotherapeutic approaches aimed at recapitulating Ag-specific MTb anergy in vivo could result in novel and effective approaches to inhibit HIV-1 disease progression in MTb/HIV-1 coinfection.  相似文献   
54.
Although the small GTPase Ran is best known for its roles in nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation, recent studies have demonstrated the overexpression of Ran in multiple tumor types and that its expression is correlated with a poor patient prognosis, providing evidence for the importance of this GTPase in cell growth regulation. Here we show that Ran is subject to growth factor regulation by demonstrating that it is activated in a serum-dependent manner in human breast cancer cells and, in particular, in response to heregulin, a growth factor that activates the Neu/ErbB2 tyrosine kinase. The heregulin-dependent activation of Ran requires mTOR (mammalian target of rapamycin) and stimulates the capped RNA binding capability of the cap-binding complex in the nucleus, thus influencing gene expression at the level of mRNA processing. We further demonstrate that the excessive activation of Ran has important consequences for cell growth by showing that a novel, activated Ran mutant is sufficient to transform NIH-3T3 cells in an mTOR- and epidermal growth factor receptor-dependent manner and that Ran-transformed cells form tumors in mice.  相似文献   
55.
Ischemia-reperfusion (I/R) has critical consequences in the heart. Recent studies on the functions of I/R-activated kinases, such as p38 mitogen-activated protein kinase (MAPK), showed that I/R injury is reduced in the hearts of transgenic mice that overexpress the p38 MAPK activator MAPK kinase 6 (MKK6). This protection may be fostered by changes in the levels of many proteins not currently known to be regulated by p38. To examine this possibility, we employed the multidimensional protein identification technology MudPIT to characterize changes in levels of proteins in MKK6 transgenic mouse hearts, focusing on proteins in mitochondria, which play key roles in mediating I/R injury in the heart. Of the 386 mitochondrial proteins identified, the levels of 58 were decreased, while only 2 were increased in the MKK6 transgenic mouse hearts. Among those that were decreased were 21 mitochondrial oxidative phosphorylation complex proteins, which was unexpected because p38 is not known to mediate such decreases. Immunoblotting verified that proteins in each of the five oxidative phosphorylation complexes were reduced in MKK6 mouse hearts. On assessing functional consequences of these reductions, we found that MKK6 mouse heart mitochondria exhibited 50% lower oxidative respiration and I/R-mediated reactive oxygen species (ROS) generation, both of which are predicted consequences of decreased oxidative phosphorylation complex proteins. Thus the cardioprotection observed in MKK6 transgenic mouse hearts may be partly due to decreased electron transport, which is potentially beneficial, because damaging ROS are known to be generated by mitochondrial complexes I and III during reoxygenation.  相似文献   
56.
Lipase inhibitors have generated a great interest because they could help in the prevention or the therapy of lipase-related diseases. Therefore, the aim of the work was to evaluate by HPLC, and using Candida rugosa lipase as model, the inhibitory effect of several saponins: β-aescin, digitonin, glycyrrhizic acid (GA) and Quillaja saponin (QS); flavonoids: 3-hydroxyflavone, 5-hydroxyflavone, (±)-catechin and kaempferol; and alkaloids: aspidospermine, papaverine, physostigmine, pilocarpine, raubasine, rescinnamine, reserpine and trigonelline.

The inhibition produced by most of these compounds is described here for the first time. Saponins appeared very active, being β-aescin and digitonin the most active compounds (IC50 = 0.8–2.4 × 10−5 M). The inhibitory activity of flavonoids was lower than that of saponins (except GA), and (±)-catechin and kaempferol were the most active. Alkaloids was the most heterogeneous group assayed, varying from rescinnamine, with an IC16 similar to that of digitonin, to papaverine and others which showed almost no inhibition.

In conclusion, β-aescin, digitonin, kaempferol or (±)-catechin, strong lipase inhibitors with a low toxicity and present herbal drugs used for lipase-related diseases such as acne or ulcer, are promising candidates for the prevention or the treatment of these diseases.  相似文献   

57.
Leucine (Leu) and insulin both stimulate muscle protein synthesis, albeit at least in part via separate signaling pathways. While alcohol (EtOH) suppresses insulin-stimulated protein synthesis in cultured myocytes, its ability to disrupt Leu signaling and Rag GTPase activity has not been determined. Likewise, little is known regarding the interaction of EtOH and Leu on the AMPK/TSC2/Rheb pathway. Treatment of myocytes with EtOH (100 mM) decreased protein synthesis, whereas Leu (2 mM) increased synthesis. In combination, EtOH suppressed the anabolic effect of Leu. The effects of EtOH and Leu were associated with coordinate changes in the phosphorylation state of mTOR, raptor, and their downstream targets 4EBP1 and S6K1. As such, EtOH suppressed the ability of Leu to activate these signaling components. The Rag signaling pathway was activated by Leu but suppressed by EtOH, as evidenced by changes in the interaction of Rag proteins with mTOR and raptor. Overexpression of constitutively active (ca)RagA and caRagC increased mTORC1 activity, as determined by increased S6K1 phosphorylation. Furthermore, the caRagA-caRagC heterodimer blocked the inhibitory effect of EtOH. EtOH and Leu produced differential effects on AMPK signaling. EtOH enhanced AMPK activity, resulting in increased TSC2 (S1387) and eEF2 phosphorylation, whereas Leu had the opposite effect. EtOH also decreased the interaction of Rheb with mTOR, and this was prevented by Leu. Collectively, our results indicate that EtOH inhibits the anabolic effects that Leu has on protein synthesis and mTORC1 activity by modulating both Rag GTPase function and AMPK/TSC2/Rheb signaling.  相似文献   
58.
Inhibition of caspase-6 is a potential therapeutic strategy for some neurodegenerative diseases, but it has been difficult to develop selective inhibitors against caspases. We report the discovery and characterization of a potent inhibitor of caspase-6 that acts by an uncompetitive binding mode that is an unprecedented mechanism of inhibition against this target class. Biochemical assays demonstrate that, while exquisitely selective for caspase-6 over caspase-3 and -7, the compound’s inhibitory activity is also dependent on the amino acid sequence and P1’ character of the peptide substrate. The crystal structure of the ternary complex of caspase-6, substrate-mimetic and an 11 nM inhibitor reveals the molecular basis of inhibition. The general strategy to develop uncompetitive inhibitors together with the unique mechanism described herein provides a rationale for engineering caspase selectivity.  相似文献   
59.
Li L  Ly M  Linhardt RJ 《Molecular bioSystems》2012,8(6):1613-1625
Proteoglycans (PGs) are among the most structurally complex biomacromolecules in nature. They are present in all animal cells and frequently exert their critical biological functions through interactions with protein ligands and receptors. PGs are comprised of a core protein to which one or multiple, heterogeneous, and polydisperse glycosaminoglycan (GAG) chains are attached. Proteins, including the protein core of PGs, are now routinely sequenced either directly using proteomics or indirectly using molecular biology through their encoding DNA. The sequencing of the GAG component of PGs poses a considerably more difficult challenge because of the relatively underdeveloped state of glycomics and because the control of their biosynthesis in the endoplasmic reticulum and the Golgi is poorly understood and not believed to be template driven. Recently, the GAG chain of the simplest PG has been suggested to have a defined sequence based on its top-down Fourier transform mass spectral sequencing. This review examines the advances made over the past decade in the sequencing of GAG chains and the challenges the field face in sequencing complex PGs having critical biological functions in developmental biology and pathogenesis.  相似文献   
60.
The copper membrane monooxygenases (CuMMOs) are an important group of enzymes in environmental science and biotechnology. Areas of relevance include the development of green chemistry for sustainable exploitation of methane (CH4) reserves, remediation of chlorinated hydrocarbon contamination and monitoring human impact in the biogeochemical cycles of CH4 and nitrogen. Challenges for all these applications are that many aspects of the ecology, physiology and structure–function relationships in the CuMMOs are inadequately understood. Here, we describe genetic and physiological characterization of a novel member of the CuMMO family that has an unusual physiological substrate range (C2–C4 alkanes) and a distinctive bacterial host (Mycobacterium). The Mycobacterial CuMMO genes (designated hmoCAB) were amenable to heterologous expression in M. smegmatis—this is the first example of recombinant expression of a complete and highly active CuMMO enzyme. The apparent specific activity of recombinant cells containing hmoCAB ranged from 2 to 3 nmol min–1 per mg protein on ethane, propane and butane as substrates, and the recombinants could also attack ethene, cis-dichloroethene and 1,2-dichloroethane. No detectable activity of recombinants or wild-type strains was seen with methane. The specific inhibitor allylthiourea strongly inhibited growth of wild-type cells on C2–C4 alkanes, and omission of copper from the medium had a similar effect, confirming the physiological role of the CuMMO for growth on alkanes. The hydrocarbon monooxygenase provides a new model for studying this important enzyme family, and the recombinant expression system will enable biochemical and molecular biological experiments (for example, site-directed mutagenesis) that were previously not possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号