首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3101篇
  免费   203篇
  国内免费   135篇
  2024年   14篇
  2023年   65篇
  2022年   144篇
  2021年   247篇
  2020年   169篇
  2019年   212篇
  2018年   193篇
  2017年   134篇
  2016年   198篇
  2015年   255篇
  2014年   334篇
  2013年   329篇
  2012年   317篇
  2011年   277篇
  2010年   140篇
  2009年   106篇
  2008年   104篇
  2007年   77篇
  2006年   42篇
  2005年   36篇
  2004年   20篇
  2003年   9篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1979年   1篇
  1959年   2篇
排序方式: 共有3439条查询结果,搜索用时 15 毫秒
171.
The receptor tyrosine kinases (RTKs) family is well-recognized as vital targets for the treatment of hepatocarcinoma cancer (HCC) clinically, whereas the survival benefit of target therapy sorafenib is not satisfactory for liver cancer patients due to metastasis. EGFR and MET are two molecules of the RTK family that were related to the survival time of liver cancer patients and resistance to targeted therapy in clinical reports. However, the mechanism and clinical therapeutic value of EGFR/MET in HCC metastasis are still not completely clarified. The study confirmed that EGFR/MET was highly expressed in HCC cells and tissues and the phosphorylation was stable after metastasis. The expression of EGFR/MET was up-regulated in circulating tumor microemboli (CTM) to accelerate IL-8 production and resistance to the lethal effect of leukocytes. Meanwhile, highly expressed EGFR/MET effectively regulated the Ras/MAPK pathway and stabilized suspended HCC cells by facilitating proliferation and inhibiting apoptosis. Moreover, EGFR/MET promoted phosphorylation of hetero-RTKs, which was dependent on high-energy phosphoric acid compounds rather than their direct interactions. In conclusion, highly expressed EGFR/MET could be used in CTM identification and suitable for preventing metastasis of HCC in clinical practice.Subject terms: Liver cancer, Metastasis  相似文献   
172.
173.
Cancer immunotherapy is a new therapeutic strategy for cancer treatment that targets tumors by improving or restoring immune system function. Therapies targeting immune checkpoint molecules have exerted potent anti-tumor effects and prolonged the overall survival rate of patients. However, only a small number of patients benefit from the treatment. Oncolytic viruses exert anti-tumor effects by regulating the tumor microenvironment and affecting multiple steps of tumor immune circulation. In this study, we engineered two oncolytic viruses that express mouse anti-PD-1 antibody (VT1093M) or mouse IL-12 (VT1092M). We found that both oncolytic viruses showed significant anti-tumor effects in a murine CT26 colon adenocarcinoma model. Importantly, the intratumoral combined injection with VT1092M and VT1093M inhibited growth of the primary tumor, prevented growth of the contralateral untreated tumor, produced a vaccine-like response, activated antigen-specific T cell responses and prolonged the overall survival rate of mice. These results indicate that combination therapy with the engineered oncolytic virus may represent a potent immunotherapy strategy for cancer patients, especially those resistant to PD-1/PD-L1 blockade therapy.  相似文献   
174.
The potential antimicrobial compound Chuangxinmycin (CXM) targets the tryptophanyl-tRNA synthetase (TrpRS) of both Gram-negative and Gram-positive bacteria. However, the specific steric recognition mode and interaction mechanism between CXM and TrpRS is unclear. Here, we studied this interaction using recombinant GsTrpRS from Geobacillus stearothermophilus by X-ray crystallography and molecular dynamics (MD) simulations. The crystal structure of the recombinant GsTrpRS in complex with CXM was experimentally determined to a resolution at 2.06 Å. After analysis using a complex-structure probe, MD simulations, and site-directed mutation verification through isothermal titration calorimetry, the interaction between CXM and GsTrpRS was determined to involve the key residues M129, D132, I133, and V141 of GsTrpRS. We further evaluated binding affinities between GsTrpRS WT/mutants and CXM; GsTrpRS was found to bind CXM through hydrogen bonds with D132 and hydrophobic interactions between the lipophilic tricyclic ring of CXM and M129, I133, and V141 in the substrate-binding pockets. This study elucidates the precise interaction mechanism between CXM and its target GsTrpRS at the molecular level and provides a theoretical foundation and guidance for the screening and rational design of more effective CXM analogs against both Gram-negative and Gram-positive bacteria.  相似文献   
175.
176.
Intestinal flora provides an important contribution to the development of pulmonary tuberculosis (PTB). We performed a cross-sectional study in 52 healthy controls (HCs) and 83 patients with untreated active PTB to assess the differences in their microbiomic and metabolic profiles in faeces via V3-V4 16S rRNA gene sequencing and gas chromatography–mass spectrometry. Patients with PTB had considerable reductions in phylogenetic alpha diversity and the production of short-chain fatty acids, dysbiosis of the intestinal flora and alterations in the faecal metabolomics composition compared with HCs. Significant alterations in faecal metabolites were associated with changes in the relative abundance of specific genera. Our study describes the imbalance of the gut microbiota and altered faecal metabolomics profiles in patients with PTB; the results indicate that the gut microbiota and faecal metabolomic profiles can be used as potential preventive and therapeutic targets for PTB.  相似文献   
177.
Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent pathways. Cross-talk between the salicylic acid-dependent and the salicylic acid-independent pathways provides great regulatory potential for activating multiple resistance mechanisms in varying combinations.  相似文献   
178.
An experimental study on biomass air-steam gasification in a fluidized bed   总被引:14,自引:0,他引:14  
The characteristics of biomass air-steam gasification in a fluidized bed are studied in this paper. A series of experiments have been performed to investigate the effects of reactor temperature, steam to biomass ratio (S/B), equivalence ratio (ER) and biomass particle size on gas composition, gas yield, steam decomposition, low heating value (LHV) and carbon conversion efficiency. Over the ranges of the experimental conditions used, the fuel gas yield varied between 1.43 and 2.57 Nm3/kg biomass and the LHV of the fuel gas was between 6741 and 9143 kJ/Nm3. The results showed that higher temperature contributed to more hydrogen production, but too high a temperature lowered gas heating value. The LHV of fuel gas decreased with ER. Compared with biomass air gasification, the introduction of steam improved gas quality. However, excessive steam would lower gasification temperature and so degrade fuel gas quality. It was also shown that a smaller particle was more favorable for higher gas LHV and yield.  相似文献   
179.
180.
Xu A  Yao J  Yu L  Lv S  Wang J  Yan B  Yu Z 《Journal of applied microbiology》2004,96(6):1317-1323
AIM: To increase the transformation rate of l-sorbose to 2-keto-l-gulonic (2-KLG) acid in a two-step process of l-ascrobic acid manufacture by ion beam. METHODS AND RESULTS: Gluconobacter oxydans (GO29) and Bacillus megaterium (BM80) were used in the present study. Ion implantation was carried out with the heavy ion implantation facility at the institute of Plasma Physics in China. 2-KLG in whole culture broth was determined by iodometry. Mutants were screened by single-colony isolation and 2-KLG accumulation in broth. GO29 and BM80 were implanted by either hydrogen ions (H(+)) or nitrogen ions (N(+)) with various doses, respectively. The average transformation rate of GM112-302 bred by ion beam in Gram-molecule was increased from 79.3 to 94.5% after eight passages in shaking flasks. Furthermore, in 180-ton fermentors in Jiangsu Jiangshan Pharmaceutical Co. Ltd, the transformation rate was stable at 92.0%, indicating a producer could get 0.99 kg of gulonic acid from 1.0 kg of sorbose. CONCLUSION: Ion beam as a new mutation source had potential advantages in breeding. Comparing with original mixture GO29 and BM80, GM112-302 is more efficient in accumulating 2-KLG, especially at the later phase. SIGNIFICANCE AND IMPACT OF THE STUDY: GM112-302 bred by ion beam implantation dramatically increased the transformation rate by 19.2%, which greatly increased efficiency and reduced the cost of l-ascorbic acid manufacture in a two-step process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号