首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2396篇
  免费   185篇
  国内免费   193篇
  2774篇
  2024年   14篇
  2023年   47篇
  2022年   105篇
  2021年   144篇
  2020年   125篇
  2019年   128篇
  2018年   115篇
  2017年   104篇
  2016年   111篇
  2015年   134篇
  2014年   169篇
  2013年   173篇
  2012年   208篇
  2011年   195篇
  2010年   103篇
  2009年   110篇
  2008年   92篇
  2007年   97篇
  2006年   97篇
  2005年   67篇
  2004年   56篇
  2003年   58篇
  2002年   42篇
  2001年   35篇
  2000年   33篇
  1999年   28篇
  1998年   20篇
  1997年   21篇
  1996年   18篇
  1995年   17篇
  1994年   24篇
  1993年   12篇
  1992年   16篇
  1991年   13篇
  1990年   7篇
  1989年   5篇
  1988年   8篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1983年   2篇
  1982年   2篇
  1979年   3篇
排序方式: 共有2774条查询结果,搜索用时 15 毫秒
51.
High levels of insulin-like growth factor II (IGFII) mRNA expression are detected in many human tumors of different origins including rhabdomyosarcoma, a tumor of skeletal muscle origin. To investigate the role of IGFII in tumorigenesis, we have compared the mouse myoblast cell line C2C12-2.7, which was stably transfected with human IGFII cDNA and expressed high and constant amounts of IGFII, to a control cell line C2C12-1.1. A rhabdomyosarcoma cell line, RH30, which expresses high levels of IGFII and contains mutated p53, was also used in these studies. IGFII overexpression in mouse myoblast C2C12 cells causes a reduced cycling time and higher growth rate. After gamma-irradiation treatment, C2C12-1.1 cells were arrested mainly in G0/G1 phase. However, C2C12-2.7 and RH30 cells went through a very short G1 phase and then were arrested in an extended G2/M phase. To verify further the effect of IGFII on the cell cycle, we developed a Chinese hamster ovary (CHO) cell line with tetracycline-controlled IGFII expression. We found that CHO cells with high expression of IGFII have a shortened cycling time and a diminished G1 checkpoint after treatment with methylmethane sulfonate (MMS), a DNA base-damaging agent, when compared with CHO cells with very low IGFII expression. It was also found that IGFII overexpression in C2C12 cells was associated with increases in cyclin D1, p21, and p53 protein levels, as well as mitogen-activated protein kinase activity. These studies suggest that IGFII overexpression shortens cell cycling time and diminishes the G1 checkpoint after DNA damage despite an intact p53/p21 induction. In addition, IGFII overexpression is also associated with multiple changes in the levels and activities of cell cycle regulatory components following gamma-irradiation. Taken together, these changes may contribute to the high growth rate and genetic alterations that occur during tumorigenesis.  相似文献   
52.
53.
Kir2.1 (also known as IRK1) plays key roles in regulation of resting membrane potential and cell excitability. To achieve its physiological roles, Kir2.1 performs a series of conformational transition, named as gating. However, the structural basis of gating is still obscure. Here, we combined site‐directed mutation, two‐electrode voltage clamp with molecular dynamics simulations and determined that H221 regulates the gating process of Kir2.1 by involving a weak interaction network. Our data show that the H221R mutant accelerates the rundown kinetics and decelerates the reactivation kinetics of Kir2.1. Compared with the WT channel, the H221R mutation strengthens the interaction between the CD‐ and G‐loops (E303‐R221) which stabilizes the close state of the G‐loop gate and weakens the interactions between C‐linker and CD‐loop (R221‐R189) and the adjacent G‐loops (E303‐R312) which destabilizes the open state of G‐loop gate. Our data indicate that the three pairs of interactions (E303‐H221, H221‐R189 and E303‐R312) precisely regulate the G‐loop gate by controlling the conformation of G‐loop. Proteins 2016; 84:1929–1937. © 2016 Wiley Periodicals, Inc.  相似文献   
54.
Cycas multipinnata C.J. Chen & S.Y. Yang is a cycad endemic to the Red River drainage region that occurs under evergreen forest on steep limestone slopes in Southwest China and northern Vietnam. It is listed as endangered due to habitat loss and over-collecting for the ornamental plant trade, and only several populations remain. In this study, we assess the genetic variation, population structure, and phylogeography of C. multipinnata populations to help develop strategies for the conservation of the species. 60 individuals from six populations were used for chloroplast DNA (cpDNA) sequencing and 100 individuals from five populations were genotyped using 17 nuclear microsatellites. High genetic differentiation among populations was detected, suggesting that pollen or seed dispersal was restricted within populations. Two main genetic clusters were observed in both the cpDNA and microsatellite loci, corresponding to Yunnan China and northern Vietnam. These clusters indicated low levels of gene flow between the regions since their divergence in the late Pleistocene, which was inferred from both Bayesian and coalescent analysis. In addition, the result of a Bayesian skyline plot based on cpDNA portrayed a long history of constant population size followed by a decline in the last 50,000 years of C. multipinnata that was perhaps affected by the Quaternary glaciations, a finding that was also supported by the Garza-Williamson index calculated from the microsatellite data. The genetic consequences produced by climatic oscillations and anthropogenic disturbances are considered key pressures on C. multipinnata. To establish a conservation management plan, each population of C. multipinnata should be recognized as a Management Unit (MU). In situ and ex situ actions, such as controlling overexploitation and creating a germplasm bank with high genetic diversity, should be urgently implemented to preserve this species.  相似文献   
55.
As performance of halide perovskite devices progresses, the device structure becomes more complex with more layers. Molecular interfacial structures between different layers play an increasingly important role in determining the overall performance in a halide perovskite device. However, current understanding of such interfacial structures at a molecular level nondestructively is limited, partially due to a lack of appropriate analytical tools to probe buried interfacial molecular structures in situ. Here, sum frequency generation (SFG) vibrational spectroscopy, a state‐of‐the‐art nonlinear interface sensitive spectroscopy, is introduced to the halide perovskite research community and is presented as a powerful tool to understand molecule behavior at buried halide perovskite interfaces in situ. It is found that interfacial molecular orientations revealed by SFG can be directly correlated to halide perovskite device performance. Here how SFG can examine molecular structures (e.g., orientations) at the perovskite/hole transporting layer and perovskite/electron transporting layer interfaces is discussed. This will promote the use of SFG to investigate molecular structures of buried interfaces in various halide perovskite materials and devices in situ nondestructively with a sub‐monolayer interface sensitivity. Such research will help to elucidate structure–function relationships of buried interfaces, aiding in the rational design/development of halide perovskite materials/devices with improved performance.  相似文献   
56.
Oxidized low-density lipoprotein (Ox-LDL)-induced endothelial cell injury plays a crucial role in the pathogenesis of atherosclerosis (AS). Plasma galectin-3 (Gal-3) is elevated inside and drives diverse systemic inflammatory disorders, including cardiovascular diseases. However, the exact role of Gal-3 in ox-LDL-mediated endothelial injury remains unclear. This study explores the effects of Gal-3 on ox-LDL-induced endothelial dysfunction and the underlying molecular mechanisms. In this study, Gal-3, integrin β1, and GTP-RhoA in the blood and plaques of AS patients were examined by ELISA and western blot respectively. Their levels were found to be obviously upregulated compared with non-AS control group. CCK8 assay and flow cytometry analysis showed that Gal-3 significantly decreased cell viability and promoted apoptosis in ox-LDL-treated human umbilical vascular endothelial cells (HUVECs). The upregulation of integrinβ1, GTP-RhoA, p-JNK, p-p65, p-IKKα, and p-IKKβ induced by ox-LDL was further enhanced by treatment with Gal-3. Pretreatment with Gal-3 increased expression of inflammatory factors (interleukin [IL]-6, IL-8, and IL-1β), chemokines(CXCL-1 and CCL-2) and adhesion molecules (VCAM-1 and ICAM-1). Furthermore, the promotional effects of Gal-3 on NF-κB activation and inflammatory factors in ox-LDL-treated HUVECs were reversed by the treatments with integrinβ1-siRNA or the JNK inhibitor. We also found that integrinβ1-siRNA decreased the protein expression of GTP-RhoA and p-JNK, while RhoA inhibitor partially reduced the upregulated expression of p-JNK induced by Gal-3. In conclusion, our finding suggests that Gal-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation.  相似文献   
57.
Reading is an important part of our daily life, and rapid responses to emotional words have received a great deal of research interest. Our study employed rapid serial visual presentation to detect the time course of emotional noun processing using event-related potentials. We performed a dual-task experiment, where subjects were required to judge whether a given number was odd or even, and the category into which each emotional noun fit. In terms of P1, we found that there was no negativity bias for emotional nouns. However, emotional nouns elicited larger amplitudes in the N170 component in the left hemisphere than did neutral nouns. This finding indicated that in later processing stages, emotional words can be discriminated from neutral words. Furthermore, positive, negative, and neutral words were different from each other in the late positive complex, indicating that in the third stage, even different emotions can be discerned. Thus, our results indicate that in a three-stage model the latter two stages are more stable and universal.  相似文献   
58.
59.
Prions are transmissible self-replicating alternative states of proteins. Four prions ([PSI+], [URE3], [RNQ+] and [NU+]) can be inherited cytoplasmically in Saccharomyces cerevisiae laboratory strains. In the case of [PSI+], there is increasing evidence that prion formation may engender mechanisms to uncover hidden genetic variation. Here, we have analysed the evolution of the prion-determinant (PD) domains across 21 fungi, focusing on compositional biases, repeats and substitution rates. We find evidence for constraint on all four PD domains, but each domain has its own evolutionary dynamics. For [PSI+], the Q/N bias is maintained in fungal clades that diverged one billion years ago, with purifying selection observed within the Saccharomyces species. The degree of Q/N bias is correlated with the degree of local homology to prion-associated repeats, which occur rarely in other proteins (<1% of sequences for the proteomes studied). The evolutionary conservation of Q/N bias in Sup35p is unusual, with only eight other S. cerevisiae proteins showing similar, phylogenetically deep patterns of bias conservation. The [URE3] PD domain is unique to Hemiascomycota; part of the PD domain shows purifying selection, whereas another part engenders bias changes between clades. Also, like for Sup35p, the [RNQ+] and [NU+] PD domains show purifying selection in Saccharomyces species. Additionally, in each proteome, we observe on average several hundred yeast-prion-like domains, with fewest in fission yeast. Our findings on yeast prion evolution provide further support for the functional significance of these molecules.  相似文献   
60.
Abenes G  Chan K  Lee M  Haghjoo E  Zhu J  Zhou T  Zhan X  Liu F 《Journal of virology》2004,78(13):6891-6899
A pool of murine cytomegalovirus (MCMV) mutants was previously generated by using a Tn3-based transposon mutagenesis approach (X. Zhan, M. Lee, J. Xiao, and F. Liu, J. Virol. 74:7411-7421, 2000). In this study, one of the MCMV mutants, Rvm155, which contained the transposon insertion in open reading frame m155, was characterized in vitro for its replication in tissue culture and in vivo for its growth and virulence in immunodeficient SCID mice. Compared to the wild-type strain and a rescued virus that restored the m155 region, the mutant is significantly deficient in growth in many organs of the infected animals. At 21 days postinfection the titers of Rvm155 in the salivary glands, lungs, spleens, livers, and kidneys of the intraperitoneally infected SCID mice were lower than the titers of the wild-type virus and the rescued virus by 50-, 1,000-, 500-, 100-, and 500-fold, respectively. Moreover, the viral mutant was attenuated in killing the SCID mice, as none of the SCID mice that were intraperitoneally infected with Rvm155 died until 38 days postinfection while all the animals infected with the wild-type and rescued viruses died at 27 days postinfection. Our results provide the first direct evidence that a disruption of m155 expression leads to attenuation of viral virulence and growth in animals. Moreover, these results suggest that m155 is a viral determinant for optimal MCMV growth and virulence in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号