全文获取类型
收费全文 | 29166篇 |
免费 | 2132篇 |
国内免费 | 1614篇 |
专业分类
32912篇 |
出版年
2024年 | 64篇 |
2023年 | 345篇 |
2022年 | 834篇 |
2021年 | 1416篇 |
2020年 | 965篇 |
2019年 | 1191篇 |
2018年 | 1169篇 |
2017年 | 833篇 |
2016年 | 1229篇 |
2015年 | 1895篇 |
2014年 | 2126篇 |
2013年 | 2290篇 |
2012年 | 2613篇 |
2011年 | 2289篇 |
2010年 | 1452篇 |
2009年 | 1237篇 |
2008年 | 1512篇 |
2007年 | 1329篇 |
2006年 | 1166篇 |
2005年 | 982篇 |
2004年 | 790篇 |
2003年 | 695篇 |
2002年 | 533篇 |
2001年 | 479篇 |
2000年 | 379篇 |
1999年 | 411篇 |
1998年 | 243篇 |
1997年 | 265篇 |
1996年 | 252篇 |
1995年 | 214篇 |
1994年 | 217篇 |
1993年 | 150篇 |
1992年 | 216篇 |
1991年 | 184篇 |
1990年 | 130篇 |
1989年 | 106篇 |
1988年 | 79篇 |
1987年 | 108篇 |
1986年 | 82篇 |
1985年 | 69篇 |
1984年 | 52篇 |
1983年 | 36篇 |
1982年 | 36篇 |
1981年 | 26篇 |
1980年 | 21篇 |
1979年 | 25篇 |
1978年 | 17篇 |
1975年 | 21篇 |
1974年 | 18篇 |
1972年 | 17篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
221.
As the initiation step of bacterial infection or biofouling, bacterial adhesion on cells or substrates is generally an optimal target for antibacterial design. Phosphatidylethanolamine (PE) is the principal phospholipid in bacteria, and its function in bacterial adhesion remains unclear. In this study, four E. coli strains including two PE-deficient mutants (PE?PC? and PE?PC+?strains) and two PE-containing wild-type controls (PE?+?PC? strains) were recruited to investigate the influence of PE deficiency on bacterial adhesion. We found that PE deficiency could impair E. coli adhesion on macrophages (human THP-1-derived and mouse RAW264.7 macrophages) or glass coverslips by downregulating lipopolysaccharide (LPS) biosynthesis, which could be reversible by high galactose/lactose but not glucose cultivation. The data imply that PE play important role in bacterial adhesion probably via affecting LPS biosynthesis and suggest that targeting PE biosynthesis is also a potential antibacterial strategy. 相似文献
222.
Dongmei Chen Qinwei Song Runan Zhu Yuan Qian Yu Sun Jie Deng Fang Wang Yaxin Ding Run Tian Chuanhe Liu Wenjing Zhu Linqing Zhao 《中国病毒学》2017,32(2):171-174
<正>Dear Editor,Cumulative evidence supports the role of early-life viral infections,especially respiratory syncytial virus(RSV)and human rhinovirus(HRV),as major antecedents of childhood asthma(Lemanske,2002;Jackson et al.,2008).In this study,the x TAG respiratory viral panel FAST(RVP FAST)assay,a multiplex polymerase chain reaction(PCR)-based method(Arens et al.,2010;BaladaLlasat et al.,2011;Gharabaghi et al.,2011;Selvaraju,2012),was used to investigate the association of infec- 相似文献
223.
Sung-Min Kim Heejaung Kim Jeong-Seon Lee Kyung Seok Park Gye Sun Jeon Jeeheun Shon Suk-Won Ahn Seung Hyun Kim Kyung Min Lee Jung-Joon Sung Kwang-Woo Lee 《PloS one》2013,8(11)
Background
Patients with ALS may be exposed to variable degrees of chronic intermittent hypoxia. However, all previous experimental studies on the effects of hypoxia in ALS have only used a sustained hypoxia model and it is possible that chronic intermittent hypoxia exerts effects via a different molecular mechanism from that of sustained hypoxia. No study has yet shown that hypoxia (either chronic intermittent or sustained) can affect the loss of motor neurons or cognitive function in an in vivo model of ALS.Objective
To evaluate the effects of chronic intermittent hypoxia on motor and cognitive function in ALS mice.Methods
Sixteen ALS mice and 16 wild-type mice were divided into 2 groups and subjected to either chronic intermittent hypoxia or normoxia for 2 weeks. The effects of chronic intermittent hypoxia on ALS mice were evaluated using the rotarod, Y-maze, and wire-hanging tests. In addition, numbers of motor neurons in the ventral horn of the spinal cord were counted and western blot analyses were performed for markers of oxidative stress and inflammatory pathway activation.Results
Compared to ALS mice kept in normoxic conditions, ALS mice that experienced chronic intermittent hypoxia had poorer motor learning on the rotarod test, poorer spatial memory on the Y-maze test, shorter wire hanging time, and fewer motor neurons in the ventral spinal cord. Compared to ALS-normoxic and wild-type mice, ALS mice that experienced chronic intermittent hypoxia had higher levels of oxidative stress and inflammation.Conclusions
Chronic intermittent hypoxia can aggravate motor neuronal death, neuromuscular weakness, and probably cognitive dysfunction in ALS mice. The generation of oxidative stress with activation of inflammatory pathways may be associated with this mechanism. Our study will provide insight into the association of hypoxia with disease progression, and in turn, the rationale for an early non-invasive ventilation treatment in patients with ALS. 相似文献224.
Alzheimer’s disease (AD) is the most common cause of dementia worldwide and mainly characterized by the aggregated β-amyloid (Aβ) and hyperphosphorylated tau. FLZ is a novel synthetic derivative of natural squamosamide and has been proved to improve memory deficits in dementia animal models. In this study, we aimed to investigate the mechanisms of FLZ’s neuroprotective effect in APP/PS1 double transgenic mice and SH-SY5Y (APPwt/swe) cells. The results showed that treatment with FLZ significantly improved the memory deficits of APP/PS1 transgenic mice and decreased apoptosis of SH-SY5Y (APPwt/swe) cells. FLZ markedly attenuated Aβ accumulation and tau phosphorylation both in vivo and in vitro. Mechanistic study showed that FLZ interfered APP processing, i.e., FLZ decreased β-amyloid precursor protein (APP) phosphorylation, APP-carboxy-terminal fragment (APP-CTF) production and β-amyloid precursor protein cleaving enzyme 1 (BACE1) expression. These results indicated that FLZ reduced Aβ production through inhibiting amyloidogenic pathway. The mechanistic study about FLZ’s inhibitory effect on tau phosphorylation revealed t the involvement of Akt/glycogen synthase kinase 3β (GSK3β) pathway. FLZ treatment increased Akt activity and inhibited GSK3β activity both in vivo and in vitro. The inhibitory effect of FLZ on GSK3β activity and tau phosphorylation was suppressed by inhibiting Akt activity, indicating that Akt/GSK3β pathway might be the possible mechanism involved in the inhibitory effect of FLZ on tau hyperphosphorylation. These results suggested FLZ might be a potential anti-AD drug as it not only reduced Aβ production via inhibition amyloidogenic APP processing pathway, but also attenuated tau hyperphosphoylation mediated by Akt/GSK3β. 相似文献
225.
Goodchild AK Van Deurzen BT Sun QJ Chalmers J Pilowsky PM 《American journal of physiology. Regulatory, integrative and comparative physiology》2000,279(1):R320-R331
Activation of baroreceptors causes efferent sympathetic nerve activity (SNA) to fall. Two mechanisms could account for this sympathoinhibition: disfacilitation of sympathetic preganglionic neurons (SPN) and/or direct inhibition of SPN. The roles that spinal GABA and glycine receptors play in the baroreceptor reflex were examined in anesthetized, paralyzed, and artificially ventilated rats. Spinal GABA(A) receptors were blocked by an intrathecal injection of bicuculline methiodide, whereas glycine receptors were blocked with strychnine. Baroreceptors were activated by stimulation of the aortic depressor nerve (ADN), and a somatosympathetic reflex was used as control. After an intrathecal injection of vehicle, there was no effect on any measured variable or evoked reflex. In contrast, bicuculline caused a dose-dependent increase in arterial pressure, SNA, phrenic nerve discharge, and it significantly facilitated the somatosympathetic reflex. However, bicuculline did not attenuate either the depressor response or sympathoinhibition evoked after ADN stimulation. Similarly, strychnine did not affect the baroreceptor-induced depressor response. Thus GABA(A) and glycine receptors in the spinal cord have no significant role in baroreceptor-mediated sympathoinhibition. 相似文献
226.
Differential localization of conventional protein kinase C isoforms during mouse oocyte development 总被引:7,自引:0,他引:7
Protein kinase C (PKC), the major cell target for tumor-promoting phorbol esters, plays a central role in signal transduction pathways. In many biological systems where Ca(2+) serves as a second messenger, regulatory control is mediated by PKC. The activation of PKC depends on its binding to RACK1 receptor, which is an intracellular protein anchor for activated PKC. We demonstrate that the conventional PKC (cPKC) isoforms, PKC-alpha, PKC-betaI, and PKC-betaII, as well as RACK1, are expressed in mouse oocytes (germinal vesicle [GV]) and mature eggs (metaphase II [MII]). In GV oocytes, PKC-alpha, PKC-betaII, and RACK1 were uniformly distributed in the cytoplasm, while PKC-betaI was localized in the cytoplasm and in the plasma membrane as well. Treatment of GV oocytes with the biologically active phorbol ester, 12-o-tetradecanoyl phorbol-13-acetate (TPA), resulted in a rapid translocation of the cytosolic PKC-alpha, but not PKC-betaI, PKC-betaII, or RACK1, to the plasma membrane. This was associated with inhibition of GV breakdown. In MII eggs (17 h post-hCG), PKC-alpha was uniformly distributed in the cytoplasm while PKC-betaI and -betaII were distributed in the cytoplasm and in the plasma membrane as well. Treatment with TPA resulted in a rapid translocation of PKC-alpha from the cytoplasm to the plasma membrane and a significant decrease of PKC-betaI throughout the cytoplasm, while it also remained in the cell periphery. No change in the distribution of PKC-betaII or RACK1 was observed. TPA also induced pronucleus formation. Physiological activation of MII eggs by sperm induced cortical granule exocytosis associated with significant translocation of PKC-alpha and -betaI, but not -betaII, to the plasma membrane. Overall, these results suggest a possible involvement of cPKC isoforms in the mechanism of mouse oocyte maturation and egg activation. 相似文献
227.
228.
229.
Bikram Pandey Janak R. Khatiwada Lin Zhang Kaiwen Pan Mohammed A. Dakhil Qinli Xiong Ram Kailash P. Yadav Mohan Siwakoti Akash Tariq Olusanya Abiodun Olatunji Meta Francis Justine Xiaogang Wu Xiaoming Sun Ziyan Liao Zebene Tadesse Negesse 《Ecology and evolution》2020,10(17):9474-9485
Studying the pattern of species richness is crucial in understanding the diversity and distribution of organisms in the earth. Climate and human influences are the major driving factors that directly influence the large‐scale distributions of plant species, including gymnosperms. Understanding how gymnosperms respond to climate, topography, and human‐induced changes is useful in predicting the impacts of global change. Here, we attempt to evaluate how climatic and human‐induced processes could affect the spatial richness patterns of gymnosperms in China. Initially, we divided a map of the country into grid cells of 50 × 50 km2 spatial resolution and plotted the geographical coordinate distribution occurrence of 236 native gymnosperm taxa. The gymnosperm taxa were separated into three response variables: (a) all species, (b) endemic species, and (c) nonendemic species, based on their distribution. The species richness patterns of these response variables to four predictor sets were also evaluated: (a) energy–water, (b) climatic seasonality, (c) habitat heterogeneity, and (d) human influences. We performed generalized linear models (GLMs) and variation partitioning analyses to determine the effect of predictors on spatial richness patterns. The results showed that the distribution pattern of species richness was highest in the southwestern mountainous area and Taiwan in China. We found a significant relationship between the predictor variable set and species richness pattern. Further, our findings provide evidence that climatic seasonality is the most important factor in explaining distinct fractions of variations in the species richness patterns of all studied response variables. Moreover, it was found that energy–water was the best predictor set to determine the richness pattern of all species and endemic species, while habitat heterogeneity has a better influence on nonendemic species. Therefore, we conclude that with the current climate fluctuations as a result of climate change and increasing human activities, gymnosperms might face a high risk of extinction. 相似文献
230.
Xiaohan Sun Feng Wang Rong Cui Xiao Liu Xiangxiang Li Jibin Dong Lu Sun Siqi Qin Renqing Wang Peiming Zheng Hui Wang 《Ecology and evolution》2020,10(12):5270-5280
Vitex negundo L. var. heterophylla (Franch.) Rehder (Lamiaceae) is an important tree species for soil and water conservation, yet the reproductive ecology of this species remains to be elucidated. To investigate the reproductive traits of V. negundo var. heterophylla, the phenology, morphological characteristics (a suite of characters was assessed: floral morphology, nectar production, pollen viability, and stigma receptivity) and mating system of this species were systematically revealed for the first time in this study. Phenological observations, morphological measurements, and nectar production analysis were conducted during anthesis. Pollen viability and stigma receptivity at different flowering stages were measured by biochemical methods. Finally, genetic analysis based on SSR markers was used to reveal the mating system; outcrossing index and pollen‐ovule ratio were also calculated to help analysis. V. negundo var. heterophylla showed several obvious characteristics of outcrossing, such as abundant and attractive flowers, secreting nectar, and emitting scent. In addition, mechanisms such as homogamy and a short anther‐stigma distance that can promote self‐fertilization were also identified in this species. The coexistence of selfing and outcrossing characteristics demonstrates a predominantly outcrossed mixed mating system (outcrossing rate, t = 95%). The scientific information provided by this study may contribute to conservation of V. negundo var. heterophylla from a reproductive perspective. 相似文献