首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   25篇
  324篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2017年   5篇
  2016年   6篇
  2015年   8篇
  2014年   15篇
  2013年   14篇
  2012年   33篇
  2011年   19篇
  2010年   14篇
  2009年   8篇
  2008年   8篇
  2007年   16篇
  2006年   8篇
  2005年   13篇
  2004年   6篇
  2003年   13篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   6篇
  1997年   7篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1992年   8篇
  1991年   5篇
  1990年   4篇
  1989年   5篇
  1988年   7篇
  1986年   7篇
  1985年   4篇
  1984年   7篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1978年   2篇
  1977年   1篇
  1973年   3篇
  1972年   7篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1965年   1篇
  1964年   1篇
  1907年   2篇
排序方式: 共有324条查询结果,搜索用时 0 毫秒
121.

Background  

A polarized light scattering technique was used to monitor the performance of a continuously operated foam fractionation process. The S 11 and S 12 parameters, elements of the light scattering matrix, combined together (S 11 +S 12) have been correlated with the bubble size and liquid content for the case of a freely draining foam. The performance of a foam fractionation column is known to have a strong dependence on the bubble size distribution and liquid hold up in foam. In this study the enrichment is used as a metric, representative of foam properties and column performance, and correlated to the S 11 +S 12 parameter.  相似文献   
122.
The first step in bacteriophage infection is recognition and binding to the host receptor, which is mediated by the phage receptor binding protein (RBP). Different RBPs can lead to differential host specificity. In many bacteriophages, such as Escherichia coli and Lactococcal phages, RBPs have been identified as the tail fiber or protruding baseplate proteins. However, the tail fiber-dependent host specificity in Pseudomonas aeruginosa phages has not been well studied. This study aimed to identify and investigate the binding specificity of the RBP of P. aeruginosa phages PaP1 and JG004. These two phages share high DNA sequence homology but exhibit different host specificities. A spontaneous mutant phage was isolated and exhibited broader host range compared with the parental phage JG004. Sequencing of its putative tail fiber and baseplate region indicated a single point mutation in ORF84 (a putative tail fiber gene), which resulted in the replacement of a positively charged lysine (K) by an uncharged asparagine (N). We further demonstrated that the replacement of the tail fiber gene (ORF69) of PaP1 with the corresponding gene from phage JG004 resulted in a recombinant phage that displayed altered host specificity. Our study revealed the tail fiber-dependent host specificity in P. aeruginosa phages and provided an effective tool for its alteration. These contributions may have potential value in phage therapy.  相似文献   
123.
Polycystin-1 is the gene product of PKD1, the first gene identified to be causative for the condition of autosomal dominant polycystic kidney disease (ADPKD). Mutations in PKD1 are responsible for the majority of ADPKD cases worldwide. Polycystin-1 is a protein of the transient receptor potential channels superfamily, with 11 transmembrane spans and an extracellular N-terminal region of approximately 3109 amino acid residues, harboring multiple putative ligand binding domains. We demonstrate here that annexin A5 (ANXA5), a Ca(2+) and phospholipid binding protein, interacts with the N-terminal leucine-rich repeats of polycystin-1, in vitro and in a cell culture model. This interaction is direct and specific and involves a conserved sequence of the ANXA5 N-terminal domain. Using Madin-Darby canine kidney cells expressing polycystin-1 in an inducible manner we also show that polycystin-1 colocalizes with E-cadherin at cell-cell contacts and accelerates the recruitment of intracellular E-cadherin to reforming junctions. This polycystin-1 stimulated recruitment is significantly delayed by extracellular annexin A5.  相似文献   
124.
125.
The oral opportunistic pathogen Fusobacterium nucleatum is known to interact with a large number of different bacterial species residing in the oral cavity. It adheres to a variety of Gram-positive bacteria, including oral streptococci via the arginine-inhibitable adhesin RadD. In this study, we describe a novel protein encoded by the predicted open reading frame FN1253 that appears to play a role in interspecies interactions of F. nucleatum, particularly with oral streptococci and related Gram-positive species. We designated FN1253 as aid1 (Adherence Inducing Determinant 1). Expression analyses demonstrated that this gene was induced in F. nucleatum single species biofilms, while the presence of representative members of the oral microbiota known to adhere to F. nucleatum triggered its suppression. Inactivation as well as overexpression of aid1 affected the ability of F. nucleatum to coaggregate with oral streptococci and the closely related Enterococcus faecalis, but not other Gram-positive oral species tested. Furthermore, overexpression of aid1 led to a drastic change in the structure of dual species biofilms of F. nucleatum with oral streptococci. Aid1 function was abolished in the presence of arginine and found to be dependent on RadD. Interestingly, differential expression of aid1 did not affect messenger RNA and protein levels of RadD. These findings indicate that RadD-mediated adhesion to oral streptococci involves more complex cellular processes than the simple interaction of adhesins on the surface of partner strains. Aid1 could potentially play an important role in facilitating RadD-mediated interaction with oral streptococci by increasing binding specificity of F. nucleatum to other microbial species.  相似文献   
126.
We have investigated the influence of silicon on higher zinc concentration reducing the growth of aboveground parts by ca 50 % in young maize plants (hybrid Novania) grown in hydroponics. Eight different treatments were used: control, Zn (800 μM ZnSO4·7H2O), Si1/Si2.5/Si5 (1/2.5/5 mM Na2SiO7) and Zn+Si (combination of zinc and all silicon concentrations). The concentration of Zn and Si and their distribution in plants was determined. The growth parameters (length of primary seminal root, leaf area of first and second leaves, fresh and dry weight of below- and above-ground plant parts) of plants grown in various Zn+Si treatments were significantly decreased in comparison to all other treatments. Increasing concentration of Si in combination with Zn treatment and selected hybrid (Novania) resulted in increased physiological stress in comparison to Zn treatment. However, roots and shoots of all Zn+Si treated plants contained significantly lower amount of Zn than Zn treatment. The Si concentration in roots was the same in Si and Zn+Si plants. In general, higher amount of Si was observed in shoots than in roots of Si1- and Si2.5-treated plants and opposite was observed in Si5-treated plants. In spite of significantly decreased root and shoot accumulation of Zn in the presence of Si, no positive effect of Si on Zn toxicity in young maize plants under experimental conditions used in this work and used maize hybrid was observed.  相似文献   
127.
One intriguing discovery in modern microbiology is the extensive presence of extracellular DNA (eDNA) within biofilms of various bacterial species. Although several biological functions have been suggested for eDNA, including involvement in biofilm formation, the detailed mechanism of eDNA integration into biofilm architecture is still poorly understood. In the biofilms formed by Myxococcus xanthus, a Gram-negative soil bacterium with complex morphogenesis and social behaviors, DNA was found within both extracted and native extracellular matrices (ECM). Further examination revealed that these eDNA molecules formed well organized structures that were similar in appearance to the organization of exopolysaccharides (EPS) in ECM. Biochemical and image analyses confirmed that eDNA bound to and colocalized with EPS within the ECM of starvation biofilms and fruiting bodies. In addition, ECM containing eDNA exhibited greater physical strength and biological stress resistance compared to DNase I treated ECM. Taken together, these findings demonstrate that DNA interacts with EPS and strengthens biofilm structures in M. xanthus.  相似文献   
128.
The polymicrobial nature of periodontal diseases is reflected by the diversity of phylotypes detected in subgingival plaque and the finding that consortia of suspected pathogens rather than single species are associated with disease development. A number of these microorganisms have been demonstrated in vitro to interact and enhance biofilm integration, survival or even pathogenic features. To examine the in vivo relevance of these proposed interactions, we extended the spatial arrangement analysis tool of the software daime (digital image analysis in microbial ecology). This modification enabled the quantitative analysis of microbial co-localization in images of subgingival biofilm species, where the biomass was confined to fractions of the whole-image area, a situation common for medical samples. Selected representatives of the disease-associated red and orange complexes that were previously suggested to interact with each other in vitro (Tannerella forsythia with Fusobacterium nucleatum and Porphyromonas gingivalis with Prevotella intermedia) were chosen for analysis and labeled with specific fluorescent probes via fluorescence in situ hybridization. Pair cross-correlation analysis of in vivo grown biofilms revealed tight clustering of F. nucleatum/periodonticum and T. forsythia at short distances (up to 6 μm) with a pronounced peak at 1.5 μm. While these results confirmed previous in vitro observations for F. nucleatum and T. forsythia, random spatial distribution was detected between P. gingivalis and P. intermedia in the in vivo samples. In conclusion, we successfully employed spatial arrangement analysis on the single cell level in clinically relevant medical samples and demonstrated the utility of this approach for the in vivo validation of in vitro observations by analyzing statistically relevant numbers of different patients. More importantly, the culture-independent nature of this approach enables similar quantitative analyses for "as-yet-uncultured" phylotypes which cannot be characterized in vitro.  相似文献   
129.

Background and Aims

Cutting plant material is essential for observing internal structures and may be difficult for various reasons. Most fixation agents such as aldehydes, as well as embedding resins, do not allow subsequent use of fluorescent staining and make material too soft to make good-quality hand-sections. Moreover, cutting thin roots can be very difficult and time consuming. A new, fast and effective method to provide good-quality sections and fluorescent staining of fresh or fixed root samples, including those of very thin roots (such as Arabidopsis or Noccaea), is described here.

Methods

To overcome the above-mentioned difficulties the following procedure is proposed: fixation in methanol (when fresh material cannot be used) followed by en bloc staining with toluidine blue, embedding in 6 % agarose, preparation of free-hand sections of embedded material, staining with fluorescent dye, and observation in a microscope under UV light.

Key Results

Despite eventual slight deformation of primary cell walls (depending on the species and root developmental stage), this method allows effective observation of different structures such as ontogenetic changes of cells along the root axis, e.g. development of xylem elements, deposition of Casparian bands and suberin lamellae in endodermis or exodermis or peri-endodermal thickenings in Noccaea roots.

Conclusions

This method provides good-quality sections and allows relatively rapid detection of cell-wall modifications. Also important is the possibility of using this method for free-hand cutting of extremely thin roots such as those of Arabidopsis.  相似文献   
130.
The aim of this study was to determine the effect of exogenously applied Si on the growth and physiological parameters of sorghum [Sorghum bicolor (L.) Moench] cultivated in hydroponics with elevated zinc concentrations (75 μM and 150 μM Zn). Increased concentrations of Zn inhibited root growth and biomass production of roots and shoots. Application of Si individually showed a positive effect on root growth but negatively affected production of fresh and dry biomass of roots and shoots. On the other hand, silicon in combination with Zn significantly reduced the inhibitory effect of Zn on root growth but did not positively affect biomass production of roots and shoots. Accumulation of Zn in plant tissues increased with increasing Zn concentration in nutrient solution, but application of Si in combination with Zn did not significantly influence Zn accumulation in roots. Completely opposite results were found in Si accumulation in roots treated with Si in combination with Zn. Interaction of these ions resulted in considerable increase of Si accumulation in roots which almost doubled in comparison to individal Si treatment. Impact of Zn on the activity of some antioxidant enzymes was equivocal and differences were observed also between two Zn concentrations. Individual application of Si resulted in significant increase in the activity of all studied antioxidant enzymes but Si in combination with Zn mostly negatively affected their activity except the activity of catalase (CAT) which was the highest in roots grown in solution containing both Si and Zn ions. Comparing all obtained data we can assume that Si applied in combination with Zn did not significantly alleviate Zn toxicity in young sorghum except the growth of primary seminal root and further experiments are required for better understanding of their interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号