首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   3篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   9篇
  2010年   11篇
  2009年   6篇
  2008年   8篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  1999年   1篇
  1998年   3篇
  1990年   1篇
  1983年   1篇
  1977年   1篇
  1976年   1篇
  1955年   1篇
  1951年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
61.
Cowart  BJ 《Chemical senses》1998,23(4):397-402
Previous studies of the effect of carbonation on taste perception have suggested that it may be negligible, manifesting primarily in increases in the perceived intensity of weak salt and sour stimuli. Assuming CO2 solutions in the mouth stimulate only trigeminal nerve endings, this result is not altogether surprising; however, there are neurophysiological data indicating that CO2 stimulates gustatory as well as trigeminal fibers. In that case, carbonation might alter the quality profile of a stimulus without producing substantial changes in overall taste intensity--much as occurs when qualitatively different taste stimuli are mixed. To address this possibility, subjects were asked to rate the total taste intensity of moderate concentrations of stimuli representing each of the basic tastes and their binary combinations, with an without added carbonation. They then subdivided total taste intensity into the proportions of sweetness, saltiness, sourness, bitterness and 'other taste qualities' they perceived. The addition of carbonation produced only small increases in ratings of total taste intensity. However, rather dramatic alterations in the quality profiles of stimuli were observed, particularly for sweet and salty tastes. The nature of the interaction is consistent with a direct effect of carbonation/CO2 on the gustatory system, although the possibility that at least some of the observed effects reflect trigeminal-gustatory interactions cannot be ruled out.   相似文献   
62.
The near-infrared spectroscopy (NIRS) signal (deoxyhemoglobin concentration; [HHb]) reflects the dynamic balance between muscle capillary blood flow (Q(cap)) and muscle O(2) uptake (Vo(2)(m)) in the microcirculation. The purposes of the present study were to estimate the time course of Q(cap) from the kinetics of the primary component of pulmonary O(2) uptake (Vo(2)(p)) and [HHb] throughout exercise, and compare the Q(cap) kinetics with the Vo(2)(p) kinetics. Nine subjects performed moderate- (M; below lactate threshold) and heavy-intensity (H, above lactate threshold) constant-work-rate tests. Vo(2)(p) (l/min) was measured breath by breath, and [HHb] (muM) was measured by NIRS during the tests. The time course of Q(cap) was estimated from the rearrangement of the Fick equation [Q(cap) = Vo(2)(m)/(a-v)O(2), where (a-v)O(2) is arteriovenous O(2) difference] using Vo(2)(p) (primary component) and [HHb] as proxies of Vo(2)(m) and (a-v)O(2), respectively. The kinetics of [HHb] [time constant (tau) + time delay [HHb]; M = 17.8 +/- 2.3 s and H = 13.7 +/- 1.4 s] were significantly (P < 0.001) faster than the kinetics of Vo(2) [tau of primary component (tau(P)); M = 25.5 +/- 8.8 s and H = 25.6 +/- 7.2 s] and Q(cap) [mean response time (MRT); M = 25.4 +/- 9.1 s and H = 25.7 +/- 7.7 s]. However, there was no significant difference between MRT of Q(cap) and tau(P)-Vo(2) for both intensities (P = 0.99), and these parameters were significantly correlated (M and H; r = 0.99; P < 0.001). In conclusion, we have proposed a new method to noninvasively approximate Q(cap) kinetics in humans during exercise. The resulting overall Q(cap) kinetics appeared to be tightly coupled to the temporal profile of Vo(2)(m).  相似文献   
63.
64.
Abstract: Animal locations estimated by Global Positioning System (GPS) inherently contain errors. Screening procedures used to remove large positional errors often trade data accuracy for data loss. We developed a simple screening method that identifies locations arising from unrealistic movement patterns. When applied to a large data set of moose (Alces alces) locations, our method identified virtually all known errors with minimal loss of data. Thus, our method for screening GPS data improves the quality of data sets and increases the value of such data for research and management.  相似文献   
65.
1. Omnivorous predators can protect plants from herbivores, but may also consume plant material themselves. Omnivores and their purely herbivorous prey have previously been thought to respond similarly to host‐plant quality. However, different responses of omnivores and herbivores to their shared host plants may influence the fitness, trophic identity, and population dynamics of the omnivores. 2. The aim of the present study was to show that an omnivorous heteropteran (Anthocoris nemorum L.) and two strictly herbivorous prey species respond differently to different genotypes of their shared host plant, Salix. Some plant genotypes were sub‐optimal for the omnivore, although suitable for the herbivores, and vice versa. 3. The contrasting patterns of plant suitability for the omnivore and the herbivores highlight an interaction between plant genotype and omnivores' access to animal food. Plant genotypes that were sub‐optimal for the omnivore when herbivores were experimentally excluded became the best host plants when herbivores were present, as in the latter situation additional prey became available. By contrast, the quality of plant genotypes that were intrinsically suitable for omnivores, did not improve when herbivores were present as these plant genotypes were intrinsically sub‐optimal for herbivores, thus providing omnivores with almost no additional animal food. 4. The differential responses of omnivores and their prey to the same host‐plant genotypes should allow omnivores to colonise sub‐optimal host plants in their capacity as predators, and to colonise more suitable host plants in their capacity as herbivores. It may thus be difficult for Salix to escape herbivory entirely, as it will rarely be unsuitable for both omnivores and pure herbivores at the same time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号