首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1507篇
  免费   141篇
  国内免费   1篇
  1649篇
  2023年   7篇
  2022年   13篇
  2021年   58篇
  2020年   21篇
  2019年   38篇
  2018年   32篇
  2017年   22篇
  2016年   47篇
  2015年   74篇
  2014年   78篇
  2013年   90篇
  2012年   116篇
  2011年   113篇
  2010年   82篇
  2009年   64篇
  2008年   87篇
  2007年   81篇
  2006年   70篇
  2005年   79篇
  2004年   61篇
  2003年   62篇
  2002年   68篇
  2001年   24篇
  2000年   22篇
  1999年   24篇
  1998年   16篇
  1997年   17篇
  1996年   7篇
  1995年   8篇
  1994年   9篇
  1993年   10篇
  1992年   19篇
  1991年   17篇
  1990年   12篇
  1989年   13篇
  1988年   13篇
  1986年   7篇
  1985年   8篇
  1984年   3篇
  1982年   4篇
  1981年   3篇
  1979年   4篇
  1977年   4篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
  1972年   4篇
  1970年   3篇
  1969年   4篇
  1966年   2篇
排序方式: 共有1649条查询结果,搜索用时 15 毫秒
181.
182.
The ventricular action potential (AP) is characterized by a fast depolarizing phase followed by a repolarization that displays a second upstroke known as phase 2. This phase is generally not present in mouse ventricular myocytes. Thus we performed colocalized electrophysiological and optical recordings of APs in Langendorff-perfused mouse hearts founding a noticeable phase 2. Ryanodine as well as nifedipine reduced phase 2. Our hypothesis is that a depolarizing current activated by Ca(2+) released from the sarcoplasmic reticulum (SR) rather than the "electrogenicity" of the L-type Ca(2+) current is crucial in the generation of mouse ventricular phase 2. When Na(+) was partially replaced by Li(+) in the extracellular perfusate or the organ was cooled down, phase 2 was reduced. These results suggest that the Na(+)/Ca(2+) exchanger functioning in the forward mode is driving the depolarizing current that defines phase 2. Phase 2 appears to be an intrinsic characteristic of single isolated myocytes and not an emergent property of the tissue. As in whole heart experiments, ventricular myocytes impaled with microelectrodes displayed a large phase 2 that significantly increases when temperature was raised from 22 to 37°C. We conclude that mouse ventricular APs display a phase 2; however, changes in Ca(2+) dynamics and thermodynamic parameters also diminish phase 2, mostly by impairing the Na(+)/Ca(2+) exchanger. In summary, these results provide important insights about the role of Ca(2+) release in AP ventricular repolarization under physiological and pathological conditions.  相似文献   
183.
All-trans-retinoic acid (atRA), the major active metabolite of vitamin A, plays a role in many biological processes, including maintenance of epithelia, immunity, and fertility and regulation of apoptosis and cell differentiation. atRA is metabolized mainly by CYP26A1, but other P450 enzymes such as CYP2C8 and CYP3As also contribute to atRA 4-hydroxylation. Although the primary metabolite of atRA, 4-OH-RA, possesses a chiral center, the stereochemical course of atRA 4-hydroxylation has not been studied previously. (4S)- and (4R)-OH-RA enantiomers were synthesized and separated by chiral column HPLC. CYP26A1 was found to form predominantly (4S)-OH-RA. This stereoselectivity was rationalized via docking of atRA in the active site of a CYP26A1 homology model. The docked structure showed a well defined niche for atRA within the active site and a specific orientation of the β-ionone ring above the plane of the heme consistent with stereoselective abstraction of the hydrogen atom from the pro-(S)-position. In contrast to CYP26A1, CYP3A4 formed the 4-OH-RA enantiomers in a 1:1 ratio and CYP3A5 preferentially formed (4R)-OH-RA. Interestingly, CYP3A7 and CYP2C8 preferentially formed (4S)-OH-RA from atRA. Both (4S)- and (4R)-OH-RA were substrates of CYP26A1 but (4S)-OH-RA was cleared 3-fold faster than (4R)-OH-RA. In addition, 4-oxo-RA was formed from (4R)-OH-RA but not from (4S)-OH-RA by CYP26A1. Overall, these findings show that (4S)-OH-RA is preferred over (4R)-OH-RA by the enzymes regulating atRA homeostasis. The stereoselectivity observed in CYP26A1 function will aid in better understanding of the active site features of the enzyme and the disposition of biologically active retinoids.  相似文献   
184.
The calmodulin (CaM)-binding domain of isoform 4b of the plasma membrane Ca(2+) -ATPase (PMCA) pump is represented by peptide C28. CaM binds to either PMCA or C28 by a mechanism in which the primary anchor residue Trp-1093 binds to the C-terminal lobe of the extended CaM molecule, followed by collapse of CaM with the N-terminal lobe binding to the secondary anchor Phe-1110 (Juranic, N., Atanasova, E., Filoteo, A. G., Macura, S., Prendergast, F. G., Penniston, J. T., and Strehler, E. E. (2010) J. Biol. Chem. 285, 4015-4024). This is a relatively rapid reaction, with an apparent half-time of ~1 s. The dissociation of CaM from PMCA4b or C28 is much slower, with an overall half-time of ~10 min. Using targeted molecular dynamics, we now show that dissociation of Ca(2+)-CaM from C28 may occur by a pathway in which Trp-1093, although deeply embedded in a pocket in the C-terminal lobe of CaM, leaves first. The dissociation begins by relatively rapid release of Trp-1093, followed by very slow release of Phe-1110, removal of C28, and return of CaM to its conformation in the free state. Fluorescence measurements and molecular dynamics calculations concur in showing that this alternative path of release of the PMCA4b CaM-binding domain is quite different from that of binding. The intermediate of dissociation with exposed Trp-1093 has a long lifetime (minutes) and may keep the PMCA primed for activation.  相似文献   
185.
Specialized insect mouthparts, such as those of Drosophila, are derived from an ancestral mandibulate state, but little is known about the developmental genetics of mandibulate mouthparts. Here, we study the metamorphic patterning of mandibulate mouthparts of the beetle Tribolium castaneum, using RNA interference to deplete the expression of 13 genes involved in mouthpart patterning. These data were used to test three hypotheses related to mouthpart development and evolution. First, we tested the prediction that maxillary and labial palps are patterned using conserved components of the leg-patterning network. This hypothesis was strongly supported: depletion of Distal-less and dachshund led to distal and intermediate deletions of these structures while depletion of homothorax led to homeotic transformation of the proximal maxilla and labium, joint formation required the action of Notch signaling components and odd-skipped paralogs, and distal growth and patterning required epidermal growth factor (EGF) signaling. Additionally, depletion of abrupt or pdm/nubbin caused fusions of palp segments. Second, we tested hypotheses for how adult endites, the inner branches of the maxillary and labial appendages, are formed at metamorphosis. Our data reveal that Distal-less, Notch signaling components, and odd-skipped paralogs, but not dachshund, are required for metamorphosis of the maxillary endites. Endite development thus requires components of the limb proximal-distal axis patterning and joint segmentation networks. Finally, adult mandible development is considered in light of the gnathobasic hypothesis. Interestingly, while EGF activity is required for distal, but not proximal, patterning of other appendages, it is required for normal metamorphic growth of the mandibles.  相似文献   
186.
Cerebellin precursor protein (Cbln1) is essential for synapse integrity in cerebellum through assembly into complexes that bridge pre-synaptic β-neurexins (Nrxn) to post-synaptic GluRδ2. However, GluRδ2 is largely cerebellum-specific, yet Cbln1 and its little studied family members, Cbln2 and Cbln4, are expressed throughout brain. Therefore, we investigated whether additional proteins mediate Cbln family actions. Whereas Cbln1 and Cbln2 bound to GluRδ2 and Nrxns1-3, Cbln4 bound weakly or not at all, suggesting it has distinct binding partners. In a candidate receptor-screening assay, Cbln4 (but not Cbln1 or Cbln2) bound selectively to the netrin receptor, (deleted in colorectal cancer (DCC) in a netrin-displaceable fashion. To determine whether Cbln4 had a netrin-like function, Cbln4-null mice were generated. Cbln4-null mice did not phenocopy netrin-null mice. Cbln1 and Cbln4 were likely co-localized in neurons thought to be responsible for synaptic changes in striatum of Cbln1-null mice. Furthermore, complexes containing Cbln1 and Cbln4 had greatly reduced affinity to DCC but increased affinity to Nrxns, suggesting a functional interaction. However, Cbln4-null mice lacked the striatal synaptic changes seen in Cbln null mice. Thus, Cbln family members interact with multiple receptors/signaling pathways in a subunit composition-dependent manner and have independent functions with Cbln4 potentially involved in the less well-characterized role of netrin/DCC in adult brain.  相似文献   
187.
At the present, no secreted phospholipase A2 (sPLA2) from soybean (Glycine max) was investigated in detail. In this work we identified five sequences of putative secreted sPLA2 from soybean after a BLAST search in G. max database. Sequence analysis showed a conserved PA2c domain bearing the Ca2+ binding loop and the active site motif. All the five mature proteins contain 12 cysteine residues, which are commonly conserved in plant sPLA2s. We propose a phylogenetic tree based on sequence alignment of reported plant sPLA2s including the novel enzymes from G. max. According to PLA2 superfamily, two of G. max sPLA2s are grouped as XIA and the rest of sequences as XIB, on the basis of differences found in their molecular weights and deviating sequences especially in the N- and C-terminal regions of the isoenzymes. Furthermore, we report the cloning, expression and purification of one of the putative isoenzyme denoted as GmsPLA2-XIA-1. We demonstrate that this mature sPLA2 of 114 residues had PLA2 activity on Triton:phospholipid mixed micelles and determine the kinetic parameters for this system. We generate a model based on the known crystal structure of sPLA2 from rice (isoform II), giving first insights into the three-dimensional structure of folded GmsPLA2-XIA-1. Besides describing the spatial arrangement of highly conserved pair HIS-49/ASP-50 and the Ca+2 loop domains, we propose the putative amino acids involved in the interfacial recognition surface. Additionally, molecular dynamics simulations indicate that calcium ion, besides its key function in the catalytic cycle, plays an important role in the overall stability of GmsPLA2-XIA-1 structure.  相似文献   
188.
189.
The current anti-hepatitis C virus (HCV) therapy, based on pegylated-interferon alpha and ribavirin, has limited success rate and is accompanied by several side effects. The aim of this study was to identify protein profiles in pretreatment liver biopsies of HCV patients correlating with the outcome of antiviral therapy. Cytosolic or membrane/organelle-enriched protein extracts from liver biopsies of eight HCV patients were analyzed by two-dimensional fluorescence difference gel electrophoresis and mass spectrometry. Overall, this analysis identified 21 proteins whose expression levels correlate with therapy response. These factors are involved in interferon-mediated antiviral activity, stress response, and energy metabolism. Moreover, we found that post-translational modifications of dihydroxyacetone kinase were also associated with therapy outcome. Differential expression of the five best performing markers (STAT1, Mx1, DD4, DAK, and PD-ECGF) was confirmed by immunoblotting assays in an independent group of HCV patients. Finally, we showed that a prediction model based on the expression levels of these markers classifies responder and nonresponder patients with an accuracy of 85.7%. These results provide evidence that the analysis of pretreatment liver protein profiles is valuable for discriminating between responder and nonresponder HCV patients, and may contribute to reduce the number of nonresponder patients exposed to therapy-associated risks.  相似文献   
190.
Recent studies have demonstrated that human stearoylCoA desaturase-1 (SCD1), a Δ9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids, controls the rate of lipogenesis, cell proliferation and tumorigenic capacity in cancer cells. However, the biological function of stearoylCoA desaturase-5 (SCD5), a second isoform of human SCD that is highly expressed in brain, as well as its potential role in human disease, remains unknown. In this study we report that the constitutive overexpression of human SCD5 in mouse Neuro2a cells, a widely used cell model of neuronal growth and differentiation, displayed a greater n-7 MUFA-to-SFA ratio in cell lipids compared to empty-vector transfected cells (controls). De novo synthesis of phosphatidylcholine and cholesterolesters was increased whereas phosphatidylethanolamine and triacylglycerol formation was reduced in SCD5-expressing cells with respect to their controls, suggesting a differential use of SCD5 products for lipogenic reactions. We also observed that SCD5 expression markedly accelerated the rate of cell proliferation and suppressed the induction of neurite outgrowth, a typical marker of neuronal differentiation, by retinoic acid indicating that the desaturase plays a key role in the mechanisms of cell division and differentiation. Critical signal transduction pathways that are known to modulate these processes, such epidermal growth factor receptor (EGFR)Akt/ERK and Wnt, were affected by SCD5 expression. Epidermal growth factor-induced phosphorylation of EGFR, Akt and ERK was markedly blunted in SCD5-expressing cells. Furthermore, the activity of canonical Wnt was reduced whereas the non-canonical Wnt was increased by the presence of SCD5 activity. Finally, SCD5 expression increased the secretion of recombinant Wnt5a, a non-canonical Wnt, whereas it reduced the cellular and secreted levels of canonical Wnt7b. Our data suggest that, by a coordinated modulation of key lipogenic pathways and transduction signaling cascades, SCD5 participates in the regulation of neuronal cell growth and differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号