首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   24篇
  2023年   2篇
  2022年   7篇
  2021年   15篇
  2020年   9篇
  2019年   7篇
  2018年   5篇
  2017年   7篇
  2016年   17篇
  2015年   22篇
  2014年   21篇
  2013年   34篇
  2012年   33篇
  2011年   37篇
  2010年   24篇
  2009年   16篇
  2008年   21篇
  2007年   24篇
  2006年   12篇
  2005年   23篇
  2004年   17篇
  2003年   23篇
  2002年   15篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1979年   1篇
  1976年   1篇
  1970年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有435条查询结果,搜索用时 31 毫秒
11.
Deamidation of asparagine residues, a post-translational modification observed in proteins, is a common degradation pathway in monoclonal antibodies (mAbs). The kinetics of deamidation is influenced by primary sequence as well as secondary and tertiary folding. Analytical hydrophobic interaction chromatography (HIC) is used to evaluate hydrophobicity of candidate mAbs and uncover post-translational modifications. Using HIC, we discovered atypical heterogeneity in a highly hydrophobic molecule (mAb-1). Characterization of the different HIC fractions using LC/MS/MS revealed a stable succinimide intermediate species localized to an asparagine-glycine motif in the heavy chain binding region. The succinimide intermediate was stable in vitro at pH 7 and below and increased on storage at 25°C and 40°C. Biacore evaluation showed a decrease in binding affinity of the succinimide intermediate compared with the native asparagine molecule. In vivo studies of mAb-1 recovered from a pharmacokinetic study in cynomolgus monkeys revealed an unstable succinimide species and rapid conversion to aspartic/iso-aspartic acid. Mutation from asparagine to aspartic acid led to little loss in affinity. This study illustrates the importance of evaluating modifications of therapeutic mAbs both in vitro and in serum, the intended environment of the molecule. Potential mechanisms that stabilize the succinimide intermediate in vitro are discussed.  相似文献   
12.
Hepatocyte nuclear factor 4α (HNF4α) regulates liver type fatty acid binding protein (L-FABP) gene expression. Conversely as shown herein, L-FABP structurally and functionally also interacts with HNF4α. Fluorescence resonance energy transfer (FRET) between Cy3-HNF4α (donor) and Cy5-L-FABP (acceptor) as well as FRET microscopy detected L-FABP in close proximity (∼80 Å) to HNF4α, binding with high affinity Kd ∼250–300 nM. Circular dichroism (CD) determined that the HNF4α/L-FABP interaction altered protein secondary structure. Finally, L-FABP potentiated transactivation of HNF4α in COS7 cells. Taken together, these data suggest that L-FABP provides a signaling path to HNF4α activation in the nucleus.  相似文献   
13.
Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)–Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)–biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (p < 0.001) in MR signal intensity or a significant decrease (p < 0.001) in T1 relaxation, measured as %T1 change. In vitro assessment of the anti-DMPO probe indicated a significant decrease (p < 0.0001) in T1 relaxation in GL261 cells that were oxidatively stressed with hydrogen peroxide, compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised brain tissues. As a negative control a non-specific IgG antibody covalently bound to the albumin–Gd-DTPA–biotin construct was used. DMPO adducts were also confirmed in tumor tissue from animals administered DMPO, compared to non-tumor brain tissue. GL261 gliomas were found to have significantly increased malondialdehyde (MDA) protein adducts (p < 0.001) and 3-nitrotyrosine (3-NT) (p < 0.05) compared to normal mouse brain tissue, indicating increased oxidized lipids and proteins, respectively. Co-localization of the anti-DMPO probe with either 3-NT or 4-hydroxynonenal was also observed. This is the first report regarding the detection of in vivo levels of free radicals from a glioma model.  相似文献   
14.
Human exposure to genotoxic agents has dramatically increased. Both endogenous (reactive species generated during physiological and pathological processes) and exogenous (UV light, ionizing radiation, alkylating agents, antimetabolites and topoisomerase inhibitors, air, water and food pollutants) factors can impair genomic stability. The cumulative DNA damage causes mutations involved in the development of cancer and other disorders (neuromuscular and neurodegenerative diseases, immune deficiencies, infertility, cardiovascular diseases, metabolic syndrome and aging). Dietary flavonoids have protective effects against DNA damage induced by different genotoxic agents such as mycotoxins, food processing-derived contaminants (polycyclic aromatic hydrocarbons, N-nitrosamines), cytostatic agents, other medications (estrogenic and androgenic hormones), nicotine, metal ions (Cd2+, Cr6+), radiopharmaceuticals and ionizing radiation. Dietary flavonoids exert their genoprotection by reducing oxidative stress and modulation of enzymes responsible for bioactivation of genotoxic agents and detoxification of their reactive metabolites. Data on structure–activity relationship is sometimes contradictory. Free hydroxyl groups on the B ring (catechol moiety) and C-3 position of the C ring are important structural features for the antigenotoxic activity. As dietary flavonoids are extensively metabolized, more in vivo studies are needed for a better characterization of their antigenotoxic potential.  相似文献   
15.
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS); its cause is unknown. To understand the pathogenesis of MS, researchers often use the experimental autoimmune encephalomyelitis (EAE) mouse model. Here, the aim is to build a proteome map of the biological changes that occur during MS at the major onset sites—the brain and the spinal cord. Quantitative proteome profiling is performed in five specific brain regions and the spinal cord of EAE and healthy mice with high‐resolution mass spectrometry based on tandem mass tags. On average, 7400 proteins per region are quantified, with the most differentially expressed proteins in the spinal cord (1691), hippocampus (104), frontal cortex (83), cerebellum (63), brainstem (50), and caudate nucleus (41). Moreover, region‐specific and commonly expressed proteins in each region are identified and bioinformatics analysis is performed. Pathway analysis reveals that protein clusters resemble their functions in disease pathogenesis (i.e., by inducing inflammatory responses, immune activation, and cell–cell adhesion). In conclusion, the study provides an understanding of the pathogenesis of MS in the EAE animal model. It is expected that the comprehensive proteome map of the brain and spinal cord can be used to identify biomarkers for the pathogenesis of MS.  相似文献   
16.
The non-receptor tyrosine kinase Syk is mainly expressed in the hematopoietic system and plays an essential role in beta(2) integrin-mediated leukocyte activation. To elucidate the signaling pathway downstream of Syk during beta2 integrin (CD11/CD18)-mediated migration and extravasation of polymorphonuclear neutrophils (PMN), we generated neutrophil-like differentiated HL-60 (dHL-60) cells expressing a fluorescently tagged Syk mutant lacking the tyrosine residue at the position 323 (Syk-Tyr323) that is known to be required for the binding of the regulatory subunit p85 of the phosphatidylinositol 3-kinase (PI3K) class I(A). Syk-Tyr323 was found to be critical for the enrichment of the catalytic subunit p110delta of PI3K class I(A) as well as for the generation of PI3K products at the leading edge of the majority of polarized cells. In accordance, the translocation of PI3K p110delta to the leading edge was diminished in Syk deficient murine PMN. Moreover, the expression of EGFP-Syk Y323F interfered with proper cell polarization and it impaired efficient migration of dHL-60 cells. In agreement with a major role of beta2 integrins in the recruitment of phagocytic cells to sites of lesion, mice with a Syk-deficient hematopoietic system demonstrated impaired PMN infiltration into the wounded tissue that was associated with prolonged cutaneous wound healing. These data imply a novel role of Syk via PI3K p110delta signaling for beta2 integrin-mediated migration which is a prerequisite for efficient PMN recruitment in vivo.  相似文献   
17.
Cultured bovine aortic endothelial cells (BAEC) were incubated for 5 days with 10?5 4-hydroxynonenal (HN). HN treated BAEC and controls were either (i) further incubated with 125I-polymyxin B (IPxB) or with radioiodinated, inactivated coagulation factor Xa (IFXai) as markers of membrane phospholipid perturbation, or (ii) assayed for the synthesis of prostacyclin (PGI2) and thromboxane A2 (TXA2). Rabbit blood mononuclear cells enriched in monocytes (MC) were isolated and assayed for chemotactic response to HN. The results showed six - fold increases of IPxB and IFXai binding to BAEC treated with HN, as compared to untreated controls. We also found in HN treated cells a marked inhibition of PGI2 synthesis, but an unmodified TXA2 production. In addition, HN in the 10-5-10-10 M range induced oriented migration of MC.  相似文献   
18.
A series of novel sodium ion-sensitive fluorescent reagents suitable for biological applications is described. The chelator nitrogen atom substituents affect the selectivity and affinity of cation binding, while the nature of the fluorophore determines the type of fluorescent response to metal ion chelation.  相似文献   
19.
Holliday junctions are central intermediates in site-specific recombination reactions mediated by tyrosine recombinases. Because these intermediates are extremely transient, only artificially assembled Holliday junctions have been available for study. We have recently identified hexapeptides that cause the accumulation of natural Holliday junctions of bacteriophage lambda Integrase (Int)-mediated reactions. We now show that one of these peptides acts after the first DNA cleavage event to stabilize protein-bound junctions and to prevent their resolution. The peptide acts before the step affected by site affinity (saf) mutations in the core region, in agreement with a model that the peptide stabilizes the products of strand exchange (i.e. Holliday junctions) while saf mutations reduce ligation of exchanged strands.Strand exchange events leading to Holliday junctions in phage lambda integration and excision are asymmetric, presumably because interactions between Int and some of its core-binding sites determine the order of strand cleavage. We have compared the structure of Holliday junctions in one unidirectional and in two bidirectional Int-mediated pathways and show that the strand cleavage steps are much more symmetric in the bidirectional pathways. Thus Int-DNA interactions which determine the order of top and bottom strand cleavage and exchange are unique in each recombination pathway.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号