首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11338篇
  免费   908篇
  国内免费   758篇
  13004篇
  2024年   20篇
  2023年   212篇
  2022年   395篇
  2021年   629篇
  2020年   395篇
  2019年   512篇
  2018年   535篇
  2017年   341篇
  2016年   508篇
  2015年   710篇
  2014年   792篇
  2013年   914篇
  2012年   1067篇
  2011年   928篇
  2010年   571篇
  2009年   495篇
  2008年   533篇
  2007年   492篇
  2006年   427篇
  2005年   361篇
  2004年   302篇
  2003年   225篇
  2002年   187篇
  2001年   202篇
  2000年   170篇
  1999年   174篇
  1998年   101篇
  1997年   123篇
  1996年   105篇
  1995年   87篇
  1994年   91篇
  1993年   48篇
  1992年   74篇
  1991年   55篇
  1990年   44篇
  1989年   46篇
  1988年   38篇
  1987年   27篇
  1986年   19篇
  1985年   22篇
  1984年   12篇
  1983年   9篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Biogeochemistry - Drylands contain a third of the organic carbon stored in global soils; however, the long-term dynamics of soil organic carbon in drylands remain poorly understood relative to...  相似文献   
952.
953.
In this study, response surface methodology was employed to optimize the medium compositions for the production of exopolysaccharides (EPS) from endophytic bacterium Paenibacillus polymyxa EJS-3. Firstly, fractional factorial design was applied to evaluate the effects of different components in the medium. It was found that sucrose, yeast extract and CaCl2 influenced significantly the production of EPS. Then, steepest ascent method and central composite design were used to optimize the concentrations of the three variables. As results, the optimal medium compositions were determined as following (g/L): sucrose 188.2, yeast extract 25.8, K2HPO4 5 and CaCl2 0.34, with a corresponding yield of 35.26 g/L. In addition, both polysaccharide fractions (EPS-1 and EPS-2) from crude EPS were mainly composed of (2 → 6)-linked β-d-fructofuranosyl residues backbone with (2 → 1)-linked branches based on their structural characterization by FT-IR spectroscopy, methylation analysis and 13C NMR spectroscopy.  相似文献   
954.
Rhizoremediation is a potential technique for polycyclic aromatic hydrocarbon (PAH) remediation; however, the catabolic pathways of in situ rhizosphere PAH degraders and the main factors driving PAH rhizoremediation remain unclear. To address these issues, stable-isotope-probing coupled with metagenomics and molecular ecological network analyses were first used to investigate the phenanthrene rhizoremediation by three different prairie grasses in this study. All rhizospheres exhibited a significant increase in phenanthrene removal and markedly modified the diversity of phenanthrene degraders by increasing their populations and interactions with other microbes. Of all the active phenanthrene degraders, Marinobacter and Enterobacteriaceae dominated in the bare and switchgrass rhizosphere respectively; Achromobacter was markedly enriched in ryegrass and tall fescue rhizospheres. Metagenomes of 13C-DNA illustrated several complete pathways of phenanthrene degradation for each rhizosphere, which clearly explained their unique rhizoremediation mechanisms. Additionally, propanoate and inositol phosphate of carbohydrates were identified as the dominant factors that drove PAH rhizoremediation by strengthening the ecological networks of soil microbial communities. This was verified by the results of rhizospheric and non-rhizospheric treatments supplemented with these two substances, further confirming their key roles in PAH removal and in situ PAH rhizoremediation. Our study offers novel insights into the mechanisms of in situ rhizoremediation at PAH-contaminated sites.  相似文献   
955.
测定了3T3细胞、人和大鼠一些组织中DNA拓扑异构酶Ⅰ的活性;估计了核酸内切酶对拓扑酶Ⅰ松弛活性测定的干扰程度;发现增殖组织全细胞抽提液中酶比活高于正常分化组织,而且在异常增殖组织中酶比活的增高更为显著。  相似文献   
956.
Solid polymer electrolytes as one of the promising solid‐state electrolytes have received extensive attention due to their excellent flexibility. However, the issues of lithium (Li) dendrite growth still hinder their practical applications in solid‐state batteries (SSBs). Herein, composite electrolytes from “ceramic‐in‐polymer” (CIP) to “polymer‐in‐ceramic” (PIC) with different sizes of garnet particles are investigated for their effectiveness in dendrite suppression. While the CIP electrolyte with 20 vol% 200 nm Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles (CIP‐200 nm) exhibits the highest ionic conductivity of 1.6 × 10?4 S cm?1 at 30 °C and excellent flexibility, the PIC electrolyte with 80 vol% 5 µm LLZTO (PIC‐5 µm) shows the highest tensile strength of 12.7 MPa. A sandwich‐type composite electrolyte (SCE) with hierarchical garnet particles (a PIC‐5 µm interlayer sandwiched between two CIP‐200 nm thin layers) is constructed to simultaneously achieve dendrite suppression and excellent interfacial contact with Li metal. The SCE enables highly stable Li plating/stripping cycling for over 400 h at 0.2 mA cm?2 at 30 °C. The LiFePO4/SCE/Li cells also demonstrate excellent cycle performance at room temperature. Fabricating sandwich‐type composite electrolytes with hierarchical filler designs can be an effective strategy to achieve dendrite‐free SSBs with high performance and high safety at room temperature.  相似文献   
957.
The transition from liver fibrosis to hepatocellular carcinoma (HCC) has been suggested to be a continuous and developmental pathological process. MicroRNAs (miRNAs) are recently discovered molecules that regulate the expression of genes involved in liver disease. Many reports demonstrate that miR‐483‐5p and miR‐483‐3p, which originate from miR‐483, are up‐regulated in HCC, and their oncogenic targets have been identified. However, recent studies have suggested that miR‐483‐5p/3p is partially down‐regulated in HCC samples and is down‐regulated in rat liver fibrosis. Therefore, the aberrant expression and function of miR‐483 in liver fibrosis remains elusive. In this study, we demonstrate that overexpression of miR‐483 in vivo inhibits mouse liver fibrosis induced by CCl4. We demonstrate that miR‐483‐5p/3p acts together to target two pro‐fibrosis factors, platelet‐derived growth factor‐β and tissue inhibitor of metalloproteinase 2, which suppress the activation of hepatic stellate cells (HSC) LX‐2. Our work identifies the pathway that regulates liver fibrosis by inhibiting the activation of HSCs.  相似文献   
958.
We report the morphology and morphogenesis of Urosoma caudata (Ehrenberg, 1833) Berger, 1999 based on in vivo observation and protargol impregnation and provide an improved diagnosis of Ucaudata based on previous and current work. Urosoma caudata differs from its congeners mainly by the combination of the following features: tail‐like posterior end, colorless cortical granules, and two macronuclear nodules. Urosoma caudata shares most of the ontogenetic features with its congeners: the oral primordium of the opisthe develops apokinetally, and the frontal‐ventral‐transverse cirral anlagen develop in five streaks. However, a unique morphogenetic characteristic is recognizable: the anlagen of three dorsal kineties occur de novo to the left of the parental structures differing from their intrakinetal origin in other Urosoma species. The first record of the 18S rRNA gene sequence for the species is also provided. Phylogenetic analyses based on 18S rRNA gene sequence data suggest that the genus Urosoma is a nonmonophyletic group.  相似文献   
959.
960.

Background

Glucocorticoids (GCs) are a first-line treatment for asthma for their anti-inflammatory effects, but they also hinder the repair of airway epithelial injury. The anti-inflammatory protein GC-induced leucine zipper (GILZ) is reported to inhibit the activation of the mitogen-activated protein kinase (MAPK)-extracellular-signal-regulated kinase (ERK) signaling pathway, which promotes the repair of airway epithelial cells around the damaged areas. We investigated whether the inhibition of airway epithelial repair imposed by the GC dexamethasone (DEX) is mediated by GILZ.

Methods

We tested the effect of DEX on the expressions of GILZ mRNA and GILZ protein and the MAPK-ERK signaling pathway in human airway epithelial cells, via RT-PCR and Western blot. We further evaluated the role of GILZ in mediating the effect of DEX on the MAPK-ERK signaling pathway and in airway epithelium repair by utilizing small-interfering RNAs, MTT, CFSE labeling, wound-healing and cell migration assays.

Results

DEX increased GILZ mRNA and GILZ protein levels in a human airway epithelial cell line. Furthermore, DEX inhibited the phosphorylation of Raf-1, Mek1/2, Erk1/2 (components of the MAPK-ERK signaling pathway), proliferation and migration. However, the inhibitory effect of DEX was mitigated in cells when the GILZ gene was silenced.

Conclusions

The inhibition of epithelial injury repair by DEX is mediated in part by activation of GILZ, which suppressed activation of the MAPK-ERK signaling pathway, proliferation and migration. Our study implicates the involvement of DEX in this process, and furthers our understanding of the dual role of GCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号