全文获取类型
收费全文 | 11346篇 |
免费 | 914篇 |
国内免费 | 765篇 |
专业分类
13025篇 |
出版年
2024年 | 20篇 |
2023年 | 212篇 |
2022年 | 397篇 |
2021年 | 629篇 |
2020年 | 395篇 |
2019年 | 513篇 |
2018年 | 537篇 |
2017年 | 341篇 |
2016年 | 508篇 |
2015年 | 711篇 |
2014年 | 791篇 |
2013年 | 915篇 |
2012年 | 1070篇 |
2011年 | 931篇 |
2010年 | 571篇 |
2009年 | 496篇 |
2008年 | 535篇 |
2007年 | 494篇 |
2006年 | 428篇 |
2005年 | 362篇 |
2004年 | 302篇 |
2003年 | 225篇 |
2002年 | 187篇 |
2001年 | 202篇 |
2000年 | 170篇 |
1999年 | 174篇 |
1998年 | 101篇 |
1997年 | 123篇 |
1996年 | 106篇 |
1995年 | 87篇 |
1994年 | 91篇 |
1993年 | 48篇 |
1992年 | 74篇 |
1991年 | 55篇 |
1990年 | 44篇 |
1989年 | 46篇 |
1988年 | 38篇 |
1987年 | 27篇 |
1986年 | 20篇 |
1985年 | 22篇 |
1984年 | 12篇 |
1983年 | 9篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Yalan Chen Zhangliu Du Zhe Weng Ke Sun Yuqin Zhang Qin Liu Yan Yang Yang Li Zhibo Wang Yu Luo Bo Gao Bin Chen Zezhen Pan Lukas Van Zwieten 《Global Change Biology》2023,29(18):5445-5459
To achieve long-term increases in soil organic carbon (SOC) storage, it is essential to understand the effects of carbon management strategies on SOC formation pathways, particularly through changes in microbial necromass carbon (MNC) and dissolved organic carbon (DOC). Using a 14-year field study, we demonstrate that both biochar and maize straw lifted the SOC ceiling, but through different pathways. Biochar, while raising SOC and DOC content, decreased substrate degradability by increasing carbon aromaticity. This resulted in suppressed microbial abundance and enzyme activity, which lowered soil respiration, weakened in vivo turnover and ex vivo modification for MNC production (i.e., low microbial carbon pump “efficacy”), and led to lower efficiency in decomposing MNC, ultimately resulting in the net accumulation of SOC and MNC. In contrast, straw incorporation increased the content and decreased the aromaticity of SOC and DOC. The enhanced SOC degradability and soil nutrient content, such as total nitrogen and total phosphorous, stimulated the microbial population and activity, thereby boosting soil respiration and enhancing microbial carbon pump “efficacy” for MNC production. The total C added to biochar and straw plots were estimated as 27.3–54.5 and 41.4 Mg C ha−1, respectively. Our results demonstrated that biochar was more efficient in lifting the SOC stock via exogenous stable carbon input and MNC stabilization, although the latter showed low “efficacy”. Meanwhile, straw incorporation significantly promoted net MNC accumulation but also stimulated SOC mineralization, resulting in a smaller increase in SOC content (by 50%) compared to biochar (by 53%–102%). The results address the decadal-scale effects of biochar and straw application on the formation of the stable organic carbon pool in soil, and understanding the causal mechanisms can allow field practices to maximize SOC content. 相似文献
32.
RPB1 and RPB2, which encode the largest and second largest subunits of RNA polymerase II, respectively, are essential single copy genes in fungi, animals and most plants. Two paralogs of the RPB2 gene have been found in some groups of angioperms [Oxelman, B., Yoshikawa, N., McConaughy, B.L., Luo, J., Denton, A.L., Hall, B.D., 2004. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Mol. Phylogenet. Evol. 32, 462-479]. Here, we report the results of experiments designed to identify the evolutionary origin of the RPB2 duplicate copies. Through careful sampling and phylogenetic analysis, we were able to construct the RPB2 gene tree in angiosperms and infer the phylogenetic positions of the gene duplication and gene loss events that occurred. Our study shows that an RPB2 gene duplication occurred early in core eudicot evolution, at or near the time of the Buxaceae/Trochodendraceae divergence. Subsequently, multiple gene duplication and paralog sorting events happened independently in different core eudicot taxa. Differential expression of the two RPB2 gene paralogs may explain the preservation of both paralogs in the asterids. One gene (RPB2-i) accounts for most of the RPB2 mRNA made in the flower organs while the other gene (RPB2-d) is predominantly used in the vegetative tissues. We also found two paralogs of the RPB1 gene in some core eudicot species. The RPB1 gene duplication occurred before core eudicot divergence, around the time of RPB2 gene duplication. Several independent RPB1 paralog sorting events happened in different core eudicot taxa; their occurrence was independent of the RPB2 paralog sorting events. Our results suggest that a polyploidization event happened at or near the time of the Buxaceae/Trochodendraceae divergence. We propose that this polyploidization and the partial diploidization processes thereafter may have been the driving force of core eudicot radiation. 相似文献
33.
34.
Tao Fang Wang Heng Wang Ai Fen Peng Qing Feng Luo Zhi Li Liu Rong Ping Zhou Song Gao Yang Zhou Wen Zhao Chen 《Biochemical and biophysical research communications》2013
FASN plays an important role in the malignant phenotype of various tumors. Our previous studies show that inhibition FASN could induce apoptosis and inhibit proliferation in human osteosarcoma (OS) cell in vivo and vitro. The aim in this study was to investigate the effect of inhibition FASN on the activity of HER2/PI3K/AKT axis and invasion and migration of OS cell. The expression of FASN, HER2 and p-HER2(Y1248) proteins was detected by immunohistochemistry in OS tissues from 24 patients with pulmonary metastatic disease, and the relationship between FASN and p-HER2 as well as HER2 was investigated. The results showed that there was a positive correlation between FASN and HER2 as well as p-HER2 protein expression. The U-2 OS cells were transfected with either the FASN specific RNAi plasmid or the negative control RNAi plasmid. FASN mRNA was measured by RT-PCR. Western blot assays was performed to examine the protein expression of FASN, HER2, p-HER2(Y1248), PI3K, Akt and p-Akt (Ser473). Migration and invasion of cells were investigated by wound healing and transwell invasion assays. The results showed that the activity of HER2/PI3K/AKT signaling pathway was suppressed by inhibiting FASN. Meanwhile, the U-2OS cells migration and invasion were also impaired by inhibiting the activity of FASN/HER2/PI3K/AKT. Our results indicated that inhibition of FASN suppresses OS cell invasion and migration via down-regulation of the “HER2/PI3K/AKT” axis in vitro. FASN blocker may be a new therapeutic strategy in OS management. 相似文献
35.
Martin L. Decaris Claire L. Emson Kelvin Li Michelle Gatmaitan Flora Luo Jerome Cattin Corelle Nakamura William E. Holmes Thomas E. Angel Marion G. Peters Scott M. Turner Marc K. Hellerstein 《PloS one》2015,10(4)
Accumulation and degradation of scar tissue in fibrotic liver disease occur slowly, typically over many years. Direct measurement of fibrogenesis, the rate of scar tissue deposition, may provide valuable therapeutic and prognostic information. We describe here results from a pilot study utilizing in vivo metabolic labeling to measure the turnover rate of hepatic collagen and collagen-associated proteins in plasma for the first time in human subjects. Eight subjects with chronic liver disease were labeled with daily oral doses of 2H2O for up to 8 weeks prior to diagnostic liver biopsy and plasma collection. Tandem mass spectrometry was used to measure the abundance and fractional synthesis rate (FSR) of proteins in liver and blood. Relative protein abundance and FSR data in liver revealed marked differences among subjects. FSRs of hepatic type I and III collagen ranged from 0.2–0.6% per day (half-lives of 4 months to a year) and correlated significantly with worsening histologic fibrosis. Analysis of plasma protein turnover revealed two collagen-associated proteins, lumican and transforming growth factor beta-induced-protein (TGFBI), exhibiting FSRs that correlated significantly with FSRs of hepatic collagen. In summary, this is the first direct measurement of liver collagen turnover in vivo in humans and suggests a high rate of collagen remodeling in advanced fibrosis. In addition, the FSRs of collagen-associated proteins in plasma are measurable and may provide a novel strategy for monitoring hepatic fibrogenesis rates. 相似文献
36.
Mark S. Tichenor John M. Keith William M. Jones Joan M. Pierce Jeff Merit Natalie Hawryluk Mark Seierstad James A. Palmer Michael Webb Mark J. Karbarz Sandy J. Wilson Michelle L. Wennerholm Filip Woestenborghs Dominiek Beerens Lin Luo Sean M. Brown Marlies De Boeck Sandra R. Chaplan J. Guy Breitenbucher 《Bioorganic & medicinal chemistry letters》2012,22(24):7357-7362
The structure–activity relationships for a series of heteroaryl urea inhibitors of fatty acid amide hydrolase (FAAH) are described. Members of this class of inhibitors have been shown to inactivate FAAH by covalent modification of an active site serine with subsequent release of an aromatic amine from the urea electrophile. Systematic Ames II testing guided the optimization of urea substituents by defining the structure–mutagenicity relationships for the released aromatic amine metabolites. Potent FAAH inhibitors were identified having heteroaryl amine leaving groups that were non-mutagenic in the Ames II assay. 相似文献
37.
38.
39.
40.