首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11556篇
  免费   939篇
  国内免费   802篇
  2024年   8篇
  2023年   191篇
  2022年   362篇
  2021年   642篇
  2020年   403篇
  2019年   526篇
  2018年   552篇
  2017年   351篇
  2016年   523篇
  2015年   730篇
  2014年   816篇
  2013年   946篇
  2012年   1090篇
  2011年   950篇
  2010年   578篇
  2009年   512篇
  2008年   546篇
  2007年   507篇
  2006年   440篇
  2005年   378篇
  2004年   310篇
  2003年   245篇
  2002年   196篇
  2001年   203篇
  2000年   173篇
  1999年   180篇
  1998年   106篇
  1997年   126篇
  1996年   109篇
  1995年   90篇
  1994年   91篇
  1993年   53篇
  1992年   78篇
  1991年   56篇
  1990年   46篇
  1989年   47篇
  1988年   38篇
  1987年   28篇
  1986年   21篇
  1985年   23篇
  1984年   12篇
  1983年   9篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
991.
992.

Background

Long noncoding RNAs (lncRNAs) are related to different biological processes in non-small cell lung cancer (NSCLC). However, the possible molecular mechanisms underlying the effects of the long noncoding RNA HOXA11-AS (HOXA11 antisense RNA) in NSCLC are unknown.

Methods

HOXA11-AS was knocked down in the NSCLC A549 cell line and a high throughput microarray assay was applied to detect changes in the gene profiles of the A549 cells. Bioinformatics analyses (gene ontology (GO), pathway, Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses) were performed to investigate the potential pathways and networks of the differentially expressed genes. The molecular signatures database (MSigDB) was used to display the expression profiles of these differentially expressed genes. Furthermore, the relationships between the HOXA11-AS, de-regulated genes and clinical NSCLC parameters were verified by using NSCLC patient information from The Cancer Genome Atlas (TCGA) database. In addition, the relationship between HOXA11-AS expression and clinical diagnostic value was analyzed by receiver operating characteristic (ROC) curve.

Results

Among the differentially expressed genes, 277 and 80 genes were upregulated and downregulated in NSCLC, respectively (fold change ≥2.0, P < 0.05 and false discovery rate (FDR) < 0.05). According to the degree of the fold change, six upregulated and three downregulated genes were selected for further investigation. Only four genes (RSPO3, ADAMTS8, DMBT1, and DOCK8) were reported to be related with the development or progression of NSCLC based on a PubMed search. Among all possible pathways, three pathways (the PI3K-Akt, TGF-beta and Hippo signaling pathways) were the most likely to be involved in NSCLC development and progression. Furthermore, we found that HOXA11-AS was highly expressed in both lung adenocarcinoma and squamous cell carcinoma based on TCGA database. The ROC curve showed that the area under curve (AUC) of HOXA11-AS was 0.727 (95% CI 0.663–0.790) for lung adenocarcinoma and 0.933 (95% CI 0.906–0.960) for squamous cell carcinoma patients. Additionally, the original data from TCGA verified that ADAMTS8, DMBT1 and DOCK8 were downregulated in both lung adenocarcinoma and squamous cell carcinoma, whereas RSPO3 expression was upregulated in lung adenocarcinoma and downregulated in lung squamous cell carcinoma. For the other five genes (STMN2, SPINK6, TUSC3, LOC100128054, and C8orf22), we found that STMN2, TUSC3 and C8orf22 were upregulated in squamous cell carcinoma and that STMN2 and USC3 were upregulated in lung adenocarcinoma. Furthermore, we compared the correlation between HOXA11-AS and de-regulated genes in NSCLC based on TCGA. The results showed that the HOXA11-AS expression was negatively correlated with DOCK8 in squamous cell carcinoma (r = ?0.124, P = 0.048) and lung adenocarcinoma (r = ?0.176, P = 0.005). In addition, RSPO3, ADAMTS8 and DOCK8 were related to overall survival and disease-free survival (all P < 0.05) of lung adenocarcinoma patients in TCGA.

Conclusions

Our results showed that the gene profiles were significantly changed after HOXA11-AS knock-down in NSCLC cells. We speculated that HOXA11-AS may play an important role in NSCLC development and progression by regulating the expression of various pathways and genes, especially DOCK8 and TGF-beta pathway. However, the exact mechanism should be verified by functional experiments.
  相似文献   
993.
994.
995.
996.
The use of halotolerant phosphate solubilizing bacteria as inoculants to convert insoluble phosphorus of salt-affected soils to an accessible form is a promising strategy to improve the phosphorus ingestion of plants in salt-affected agriculture. A total of four aerobic isolates with biggest clear halos on the 10% NaCl NBRIP medium plate containing tricalcium phosphate were isolated from the rhizospheric soils of native plants growing on the wall of Dagong Ancinet Brine Well, located in Sichuan of China. And these four isolates were classified to the same strain, named QW10-11, and closely related to Bacillus megatherium var. phosphaticum DSM 3228 and B. megaterium ATCC 14581 according to their phenotype and 16S rRNA. However, the Molecular evolutionary evidences of 16S-23S rRNA ISR further suggested that QW10-11, DSM 3228 and ATCC 14581 have respectively fall into the different sub-divisions in intra specific phylogeny. Strain QW10-11 has significantly better ability of tricalcium phosphate solubilization than that of lecithin solubilization. When it grows under pH 4.8–8.0, 24–33°C and 5–10% NaCl, it can exhibit the higher values of solubilized tricalcium phosphate between 59.3 and 71.4 μg ml−1. Furthermore, its tricalcium phosphate solubilizing activity was associated with the release of organic acids. Taken together, our results indicted that QW10-11 from the rhizospheric soils of halobiot of Dagong Ancinet Brine Well is attractive as efficient phosphate solubilizing candidates in the salt-affected agriculture.  相似文献   
997.
Li H  Zhai J  Tian J  Luo Y  Sun X 《Biosensors & bioelectronics》2011,26(12):4656-4660
In this article, carbon nanoparticles (CNPs) were used as a novel fluorescent sensing platform for highly sensitive and selective Hg(2+) detection. To the best of our knowledge, this is the first example of CNPs obtained from candle soot used in this type of sensor. The general concept used in this approach is based on that adsorption of the fluorescently labeled single-stranded DNA (ssDNA) probe by CNP via π-π stacking interactions between DNA bases and CNP leads to substantial dye fluorescence quenching; however, in the presence of Hg(2+), T-Hg(2+)-T induced hairpin structure does not adsorb on CNP and thus retains the dye fluorescence. A detection limit as low as 10nM was achieved. The present CNP-based biosensor for Hg(2+) detection exhibits remarkable specificity against other possible metal ions. Furthermore, superior selectivity performance was observed when Hg(2+) detection was carried out in the presence of a large amount of other interference ions. Finally, in order to evaluate its potential practical application, Hg(2+) detection was conducted with the use of lake water other than pure buffer and it is believed that it holds great promise for real sample analysis upon further development.  相似文献   
998.
l-glutamine (Gln) is an important conditionally necessary amino acid in human body and potential demand in food or medicine industry is expected. High efficiency of l-Gln production by coupling genetic engineered bacterial glutamine synthetase (GS) with yeast alcoholic fermentation system has been developed. We report here first the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of recombinant Bacillus subtilis GS. In order to obtain GS with high Gln-forming activity, safety and low cost for food and pharmaceutics industry, 0.1% (w/v) lactose was selected as inducer. The fusion protein was expressed in totally soluble form in E. coli, and expression was verified by SDS–PAGE and western blot analysis. The fusion protein was purified to 90% purity by nickel nitrilo-triacetic acid (Ni–NTA) resin chromatography with a yield of 625 mg per liter fermentation culture. After the SUMO/GS fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni–NTA column. Finally, about 121 mg recombinant GS was obtained from 1 l fermentation culture with no less than 96% purity. The recombinant purified GS showed great transferase activity (23 U/mg), with 25 U recombinant GS in a 50 ml reaction system, a biosynthesis yield of 27.5 g/l l-Gln was detected by high pressure liquid chromatography (HPLC) or thin-layer chromatography. Thus, the application of SUMO technology to the expression and purification of GS potentially could be employed for the industrial production of l-Gln.  相似文献   
999.
Wang  Qi  Xin  Yinqiang  Zhang  Feng  Feng  Zhiyong  Fu  Jin  Luo  Lan  Yin  Zhimin 《World journal of microbiology & biotechnology》2011,27(3):693-700
γ-aminobutyric acid (GABA) is an important bioactive regulator, and its biosynthesis is primarily through the α-decarboxylation of glutamate by glutamate decarboxylase (GAD). The procedures to obtain GABA by bioconvertion with high activity recombinant Escherichia coli GAD have been seldom understood. In this study, Escherichia coli GAD (gadA) was highly expressed (about 70–75% of total protein) as soluble protein in Escherichia coli BL21(DE3) containing pET28a-gadA, which was induced by 0.4 mM IPTG in LB medium, and maximal GABA-forming activity of the recombinant GAD was 40 U/mL at a concentration (0.15 mM) of pyridoxal phosphate (PLP) and a concentration (0.6 mM) of Ca2+ at optimal pH of 3.8. The optimal concentration (7.5 mM) of Mn2+ can also improve the activity of recombinant enzyme, but the co-effect of Ca2+ and Mn2+ exhibited antagonism effect when added simultaneously. LB and 0.1% (w/v) lactose were selected as culture medium and inducer, respectively. The relative activity was markedly higher activated by Ca2+ (174%), Mn2+ (164%) than that by other seven bivalent cations. Finally, the yield of GABA was high of 94 g/L detected by paper chromatography or HPLC in 1 L reaction system with 30 mL crude GAD (12 U/mL). By entrapping Escherichia coli glutamate decarboxylase into sodium alginate and carrageenan gel beads, the activity of immobilized GAD (IGAD) remained 85% during the initial five batches and the activity still remained 50% at the tenth batch, these results indicated that the recombinant Escherichia coli GAD was feasible for the future industrial production of GABA.  相似文献   
1000.
Objectives: DNA content of diploid H1 (ES) cells (2H1 cells) has been shown to be stable in long‐term culture; however, tetraploid and octaploid H1 (ES) cells (4H1 and 8H1 cells, respectively) were DNA‐unstable. Pentaploid H1 (ES) cells (5H1 cells) established recently have been found to be DNA‐stable; how, then is cell DNA stability determined? To discuss ploidy stability, decaploid H1 (ES) cells (10H1 cells) were established from 5H1 cells and examined for DNA stability. Materials and methods: 5H1 cells were polyploidized using demecolcine (DC) and 10H1 cells were obtained by one‐cell cloning. Results: Number of chromosomes of 10H1 cells was 180 and durations of their G1, S, and G2/M phases were 3, 7 and 6 h respectively. Volume of 10H1 cells was double that of 5H1 cells and morphology of 10H1 cells was flagstone‐like in shape. 10H1 cells exhibited alkaline phosphatase activity and their DNA content decayed in 91 days of culture. 10H1 cells injected into mouse abdomen formed solid tumours that contained several kinds of differentiated cells with lower DNA content, suggesting that 10H1 cells were pluripotent and DNA‐unstable. Loss of DNA stability was explained using a hypothesis concerning DNA structure of polyploid cells as DNA reconstructed through ploidy doubling was arranged in mirror symmetry in a new configuration. Conclusion: In the pentaploid–decaploid transition of H1 cells, cell cycle parameters and pluripotency were retained, but morphology and DNA stability were altered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号