首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   13篇
  国内免费   3篇
  198篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   7篇
  2012年   13篇
  2011年   7篇
  2010年   10篇
  2009年   9篇
  2008年   6篇
  2007年   9篇
  2006年   4篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   7篇
  2001年   2篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   6篇
  1988年   2篇
  1987年   5篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1981年   2篇
  1980年   7篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   4篇
  1974年   1篇
  1973年   2篇
  1971年   3篇
  1968年   2篇
  1967年   1篇
  1951年   1篇
  1950年   2篇
  1918年   1篇
  1917年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
41.
The heat shock response has been studied extensively, yet the molecular signals that trigger the response remain elusive. The dogma of the heat shock response contends that denatured proteins initiate the response, but evidence is accumulating to point to a more complex system in which at least more than one signal is involved in this process. Thermal stress initiates changes in cellular phospholipid membrane physical state, which when acted upon by phospholipases may release lipid mediators that could serve as triggering signals during the heat shock response. We have examined the heat shock response in freshly isolated leukocytes from the pronephros of rainbow trout (Oncorhynchus mykiss). In this study, we show that leukocytes isolated from rainbow trout acclimated to 5 or 19°C express elevated levels of heat shock protein 70 (hsp70) mRNA when heat shocked at 5°C above their respective acclimation temperature and supplementation with exogenous docosahexaenoic acid or arachidonic acid followed by heat shock enhanced levels of hsp70 mRNA. The time course for docosahexaenoic acid induced enhancement of hsp70 mRNA was accelerated compared with heat shock alone, and staurosporine inhibited the docosahexaenoic acid induced increase of hsp70 mRNA. We also provide evidence that phospholipase A2 is involved in the heat shock response.  相似文献   
42.
43.
44.
The gene encoding the major vitellogenin from chicken has been completely sequenced and its exon-intron organization has been established. The gene is 20,342 base-pairs long and contains 35 exons with a combined length of 5787 base-pairs. They encode the 1850-amino acid pre-peptide of vitellogenin, which is the precursor of the mature yolk proteins, the serine-rich and heavily phosphorylated phosvitin and the lipovitellin. The 217-amino acid phosvitin polypeptide occupies an internal position (residue 1112 through 1328) within the vitellogenin molecule. The 125,000 and 30,000 Mr lipovitellin polypeptides are encoded by the sequences at the N-terminal and the C-terminal sides of the phosvitin section, respectively. The main features of the gene and protein sequences, and the evolutionary implications, are discussed.  相似文献   
45.

Introduction

Activation of the inflammasome has been implicated in the pathology of various autoinflammatory and autoimmune diseases. While the NLRP3 inflammasome has been linked to arthritis progression, little is known about its synovial regulation or contribution to joint histopathology. Regulators of inflammation activation, such as interleukin (IL)-10, may have the potential to limit the inflammasome-driven arthritic disease course and associated structural damage. Hence, we used IL-10-deficient (IL-10KO) mice to assess NLRP3 inflammasome-driven arthritic pathology.

Methods

Antigen-induced arthritis (AIA) was established in IL-10KO mice and wild-type controls. Using histological and radiographic approaches together with quantitative real-time PCR of synovial mRNA studies, we explored the regulation of inflammasome components. These were combined with selective blocking agents and ex vivo investigative studies in osteoclast differentiation assays.

Results

In AIA, IL-10KO mice display severe disease with increased histological and radiographic joint scores. Here, focal bone erosions were associated with increased tartrate-resistant acid phosphatase (TRAP)-positive cells and a localized expression of IL-1β. When compared to controls, IL-10KO synovium showed increased expression of Il1b, Il33 and NLRP3 inflammasome components. Synovial Nlrp3 and Casp1 expression further correlated with Acp5 (encoding TRAP), while neutralization of IL-10 receptor signaling in control mice caused increased expression of Nlrp3 and Casp1. In ex vivo osteoclast differentiation assays, addition of exogenous IL-10 or selective blockade of the NLRP3 inflammasome inhibited osteoclastogenesis.

Conclusions

These data provide a link between IL-10, synovial regulation of the NLRP3 inflammasome and the degree of bone erosions observed in inflammatory arthritis.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0419-y) contains supplementary material, which is available to authorized users.  相似文献   
46.
47.
The MutS1 protein recognizes unpaired bases and initiates mismatch repair, which are essential for high-fidelity DNA replication. The homologous MutS2 protein does not contribute to mismatch repair, but suppresses homologous recombination. MutS2 lacks the damage-recognition domain of MutS1, but contains an additional C-terminal extension: the small MutS-related (Smr) domain. This domain, which is present in both prokaryotes and eukaryotes, has previously been reported to bind to DNA and to possess nicking endonuclease activity. We determine here the solution structure of the functionally active Smr domain of the Bcl3-binding protein (also known as Nedd4-binding protein 2), a protein with unknown function that lacks other domains present in MutS proteins. The Smr domain adopts a two-layer α-β sandwich fold, which has a structural similarity to the C-terminal domain of IF3, the R3H domain, and the N-terminal domain of DNase I. The most conserved residues are located in three loops that form a contiguous, exposed, and positively charged surface with distinct sequence identity for prokaryotic and eukaryotic Smr domains. NMR titration experiments and DNA binding studies using Bcl3-binding protein-Smr domain mutants suggested that these most conserved loop regions participate in DNA binding to single-stranded/double-stranded DNA junctions. Based on the observed DNA-binding-induced multimerization, the structural similarity with both subdomains of DNase I, and the experimentally identified DNA-binding surface, we propose a model for DNA recognition by the Smr domain.  相似文献   
48.
A cDNA coding for a human phosphodiesterase 4C (PDE4C2) was isolated from the mRNA prepared from the glioblastoma cell line, U87. The cDNA contained an ORF of 1818 bp corresponding to a 605 amino acid polypeptide. The sequence differed at the 5′ end from the human PDE4C previously reported (Engels, P. et al, 1995 FEBs Letters 358, 305-310) indicating that it represents a novel splice variant of the human PDE4C gene. Evidence was also obtained for a third 5′ splice variant. The PDE4C2 cDNA was transfected into both COS 1 cells and yeast cells, and shown to direct the expression of an 80 kD polypeptide by Western blotting using a PDE4C specific antiserum. The activity of cell lysates was typical of PDE4 being specific for cAMP and inhibitable by the selective inhibitor, rolipram. However, the Km for cAMP of the enzyme produced in COS cells was 0.6 μM compared to 2.6 μM for the yeast 4C activity. In addition the COS cell PDE4 activity was much more sensitive to R rolipram than the yeast PDE4 enzyme (IC50 of 23 nM compared to 1648 nM). This difference in rolipram sensitivity was associated with the detection of a high affinity [3H] R rolipram binding site on the COS cell 4C enzyme but not on the yeast expressed enzyme. The results indicate that the enzyme can adopt more than one active conformation, which are distinguished by their interaction with rolipram.  相似文献   
49.

Background  

SH3 domains are small protein modules of 60–85 amino acids that bind to short proline-rich sequences with moderate-to-low affinity and specificity. Interactions with SH3 domains play a crucial role in regulation of many cellular processes (some are related to cancer and AIDS) and have thus been interesting targets in drug design. The decapeptide APSYSPPPPP (p41) binds with relatively high affinity to the SH3 domain of the Abl tyrosine kinase (Abl-SH3), while it has a 100 times lower affinity for the α-spectrin SH3 domain (Spc-SH3).  相似文献   
50.
Identifying molecular mechanisms of insecticide resistance is important for preserving insecticide efficacy, developing new insecticides and implementing insect control. The metabolic detoxification of insecticides is a widespread resistance mechanism. Enzymes with the potential to detoxify insecticides are commonly encoded by members of the large cytochrome P450, glutathione S-transferase and carboxylesterase gene families, all rapidly evolving in insects. Here, we demonstrate that the model insect Drosophila melanogaster is useful for functionally validating the role of metabolic enzymes in conferring metabolism-based insecticide resistance. Alleles of three well-characterized genes from different pest insects were expressed in transgenic D. melanogaster : a carboxylesterase gene (αE7) from the Australian sheep blowfly Lucilia cuprina, a glutathione S-transferase gene (GstE2) from the mosquito Anopheles gambiae and a cytochrome P450 gene (Cyp6cm1) from the whitefly Bemisia tabaci. For all genes, expression in D. melanogaster resulted in insecticide resistance phenotypes mirroring those observed in resistant populations of the pest species. Using D. melanogaster to assess the potential for novel metabolic resistance mechanisms to evolve in pest species is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号