首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2629篇
  免费   126篇
  国内免费   2篇
  2757篇
  2023年   8篇
  2022年   15篇
  2021年   33篇
  2020年   30篇
  2019年   49篇
  2018年   70篇
  2017年   44篇
  2016年   105篇
  2015年   129篇
  2014年   123篇
  2013年   176篇
  2012年   216篇
  2011年   202篇
  2010年   136篇
  2009年   92篇
  2008年   163篇
  2007年   172篇
  2006年   204篇
  2005年   164篇
  2004年   128篇
  2003年   138篇
  2002年   114篇
  2001年   16篇
  2000年   10篇
  1999年   16篇
  1998年   20篇
  1997年   10篇
  1996年   11篇
  1995年   15篇
  1994年   11篇
  1993年   9篇
  1992年   6篇
  1991年   8篇
  1990年   15篇
  1989年   11篇
  1988年   11篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   6篇
  1981年   10篇
  1980年   14篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有2757条查询结果,搜索用时 0 毫秒
51.
Acr3p is an As(III)/H+ antiporter from Saccharomyces cerevisiae belonging to the bile/arsenite/riboflavin transporter superfamily. We have previously found that Cys151 located in the middle of the fourth transmembrane segment (TM4) is critical for antiport activity, suggesting that As(III) might interact with a thiol group during the translocation process. In order to identify functionally important residues involved in As(III)/H+ exchange, we performed a systematic alanine‐replacement analysis of charged/polar and aromatic residues that are conserved in the Acr3 family and located in putative transmembrane segments. Nine residues (Asn117, Trp130, Arg150, Trp158, Asn176, Arg230, Tyr290, Phe345, Asn351) were found to be critical for proper folding and trafficking of Acr3p to the plasma membrane. In addition, we found that replacement of highly conserved Phe266 (TM7), Phe352 (TM9), Glu353 (TM9) and Glu380 (TM10) with Ala abolished transport activity of Acr3p, while mutation of Ser349 (TM9) to Ala significantly reduced the As(III)/H+ exchange, suggesting an important role of these residues in the transport mechanism. Detailed mutational analysis of Glu353 and Glu380 revealed that the negatively charged residues located in the middle of transmembrane segments TM9 and TM10 are crucial for antiport activity. We also discuss a hypothetical model of the Acr3p transport mechanism.  相似文献   
52.
53.
New, flexible (7, 9, 11 and 13) and rigid (8, 10, 12 and 14) imides with a 1-(m-trifluorophenyl)piperazine fragment and a tetramethylene or a 1e,4e-cyclohexylene spacer, respectively, showed very high affinity (K(i)=0.3-34 nM) and agonistic in vivo activity for 5-HT(1A) receptors. Flexible new compounds and the previously described 5 also bound to 5-HT(7) receptors (K(i)=21-134 nM). Selected glutarimide derivatives, that is, the most potent postsynaptic 5-HT(1A) receptor agonist rigid compound 8 and its flexible analogue 7, as well as the previously described full agonist-rigid compound 6 and the partial agonist-its flexible counterpart 5 exhibited moderate affinity for alpha(1)-adrenoceptors (K(i)=85 - 268 nM), but were practically devoid of any affinity for dopamine D(2) sites. Those glutarimides demonstrated anxiolytic- (5 and 7) and antidepressant-like (5, 6 and 8) activity in the four-plate and the swim tests in mice, respectively; at the same time, however, they inhibited the locomotor activity of mice. The antidepressant-like effect of 8 was significantly stronger than that induced by imipramine used as a reference antidepressant.  相似文献   
54.
55.
Recent study has shown that a short photoperiod increases the accumulation and toxicity of cadmium (Cd) in the bank vole as compared to a long photoperiod. Since many of the effects of photoperiod on physiological processes in small mammals are transduced by the pineal gland and its hormone melatonin, in this study the effect of subchronic melatonin injection (7 mol/kg/day for 6 weeks) on the hepatic, renal and intestinal Cd accumulation in the bank voles raised under a long photoperiod and exposed to dietary Cd (0.9 mol/g) was examined. Simultaneously, histological examinations of the liver and kidneys, and analyses of metallothionein (MT) and lipid peroxidation were carried out. Melatonin co-treatment brought about a significant increase in the hepatic (61%), renal (79%) and intestinal (77%) Cd concentrations as compared to those in the Cd alone group. However, the concentrations of MT in the liver and kidneys of the Cd + melatonin co-treated bank voles did not differ from those in the Cd alone group. Also, histopathological changes in the liver (infiltration of leukocytes) and kidneys (glomerular swelling and a focal tubular cell degeneration) as well as an increase (2-fold) in the renal lipid peroxidation occurred only in animals from the Cd + melatonin group. These data indicate that (1) subchronic melatonin injection has similar effect on the tissue accumulation and toxicity of Cd to that produced by a short photoperiod and (2) the Cd-induced toxicity in the liver and kidneys of melatonin co-treated bank voles is probably due to increased Cd accumulation and decreased synthesis of MT.  相似文献   
56.
To identify the mechanisms of ultraviolet radiation (UVR)-induced cell death, for which the tumor suppressor p53 is essential, we have analyzed mouse embryonic fibroblasts (MEFs) and keratinocytes in mouse skin that have specific apoptotic pathways blocked genetically. Blocking the death receptor pathway provided no protection to MEFs, whereas UVR-induced apoptosis was potently inhibited by Bcl-2 overexpression, implicating the mitochondrial pathway. Indeed, Bcl-2 overexpression boosted cell survival more than p53 loss, revealing a p53-independent pathway controlled by the Bcl-2 family. Analysis of primary MEFs lacking individual members of its BH3-only subfamily identified major initiating roles for the p53 targets Noxa and Puma. In the transformed derivatives, where Puma, unexpectedly, was not induced by UVR, Noxa had the dominant role and Bim a minor role. Furthermore, loss of Noxa suppressed the formation of apoptotic keratinocytes in the skin of UV-irradiated mice. Collectively, these results demonstrate that UVR activates the Bcl-2-regulated apoptotic pathway predominantly through activation of Noxa and, depending on cellular context, Puma.  相似文献   
57.
The role of cholesterol in the formation of atherosclerotic lesions during hypercholesterolemia has been confirmed. alpha-Asarone is a substance of a potent hypolipidemic activity which is isolated from plants. We previously described the synthesis of several alpha-asarone analogues exhibiting hypolipidemic and antiplatelet activity. Genotoxic activity of four selected alpha-asarone analogues was theoretically evaluated based on quantum-mechanical method for calculation of enthalpy of carbocations formation (DeltaH(R)) according to the Testa's method. In the present paper, we evaluated the mutagenic and genotoxic activity of alpha-asarone isomers 2-5 based on the reference Ames test and micronucleus test. Results obtained in the study show that tested isomers were non-mutagenic, however, they exhibited growing cytotoxic activity. Relationship between the heat of formation of their putative metabolic intermediates and mutagenic/genotoxic activity was not confirmed.  相似文献   
58.
PUFA metabolites have a profound effect on inflammatory diseases and cancer progression. Blocking their production by inhibiting PUFA metabolizing enzymes (dioxygenases: cyclooxygenases and LOXs) might be a successful way to control and relieve such problems, if we learn to better understand their actions at a molecular level. Compounds with strong antioxidative and free radical scavenging properties, such as polyphenols, could be effective in blocking PUFA activities, and natural flavonoids possess such qualities. Quercetin belongs to the group of natural catecholic compounds and is known as a potent, competitive inhibitor of LOX. Structural analysis reveals that quercetin entrapped within LOX undergoes degradation, and the resulting compound has been identified by X-ray analysis as protocatechuic acid (3,4-dihydroxybenzoic acid) positioned near the iron site. Its C3-OH group points toward His523, C4-OH forms a hydrogen bond with O=C from the enzyme's C-terminus, and the carboxylic group is incorporated into the hydrogen bonding network of the active-site neighborhood via Gln514. This unexpected result, together with our previous observations concerning other polyphenols, yields new evidence about the metabolism of natural flavonoids. These compounds might be vulnerable to the co-oxidase activity of LOX, leading to enzyme-stimulated oxidative degradation, which results in an inhibitor of a lower molecular weight.  相似文献   
59.
We previously showed that erythrocyte and brain spectrins bind phospholipid vesicles and monolayers prepared from phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (Review: A.F. Sikorski, B. Hanus-Lorenz, A. Jezierski, A. R. Dluzewski, Interaction of membrane skeletal proteins with membrane lipid domain, Acta Biochim. Polon. 47 (2000) 565). Here, we show how changes in the fluidity of the phospholipid monolayer affect spectrin-phospholipid interaction. The presence of up to 10%-20% cholesterol in the PE/PC monolayer facilitates the penetration of the monolayer by both types of spectrin. For monolayers constructed from mixtures of PI/PC and cholesterol, the effect of spectrins was characterised by the presence of two maxima (at 5 and 30% cholesterol) of surface pressure for erythroid spectrin, and a single maximum (at 20% cholesterol) for brain spectrin. The binding assay results indicated a small but easily detectable decrease in the affinity of erythrocyte spectrin for FAT-liposomes prepared from a PE/PC mixture containing cholesterol, and a 2- to 5-fold increase in maximal binding capacity (Bmax) depending on the cholesterol content. On the other hand, the results from experiments with a monolayer constructed from homogenous synthetic phospholipids indicated an increase in Δπ change with the increase in the fatty acyl chain length of the phospholipids used to prepare the monolayer. This was confirmed by the results of a pelleting experiment. Adding spectrins into the subphase of raft-like monolayers constructed from DOPC, SM and cholesterol (1/1/1) induced an increase in surface pressure. The Δπ change values were, however, much smaller than those observed in the case of a natural PE/PC (6/4) monolayer. An increased binding capacity for spectrins of liposomes prepared from a “raft-like” mixture of lipids could also be concluded from the pelleting assay. In conclusion, we suggest that the effect of membrane lipid fluidity on spectrin-phospholipid interactions is not simple but depends on how it is regulated, i.e., by cholesterol content or by the chemical structure of the membrane lipids.  相似文献   
60.
Phospholipases A2 (PLA2) are a family of enzymes that catalyze the hydrolysis of the sn-2 ester bond of glycerophospholipids liberating lysophospholipids and free fatty acids; important second messengers involved in atherogenesis. Plasma PAF-acetylhydrolase (PAF-AH) or Lp-PLA2 is a Ca2+-independent PLA2 which is produced by monocyte-derived macrophages and by activated platelets, and circulates in plasma associated with lipoproteins. PAF-AH catalyzes the removal of the acetyl/short acyl group at the sn-2 position of PAF and oxidized phospholipids produced during inflammation and oxidative stress. In humans, PAF-AH is mainly associated with small dense LDL and to a lesser extent with HDL and with lipoprotein(a). PAF-AH is N-glycosylated prior to secretion which diminishes its association with HDL raising the question of its distribution between the proatherogenic LDL vs the antiatherogenic HDL. Hypercholesterolemic patients have higher plasma PAF-AH activity which is reduced upon hypolipidemic therapy. PAF-AH specific inhibitor darapladib stabilizes human and swine plaques, therefore challenging the antiatherogenic potential of PAF-AH shown in small animal models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号