首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   20篇
  2021年   1篇
  2019年   2篇
  2016年   2篇
  2015年   7篇
  2014年   3篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1989年   1篇
  1987年   5篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
排序方式: 共有89条查询结果,搜索用时 171 毫秒
41.

Background

Parasites are evolutionary hitchhikers whose phylogenies often track the evolutionary history of their hosts. Incongruence in the evolutionary history of closely associated lineages can be explained through a variety of possible events including host switching and host independent speciation. However, in recently diverged lineages stochastic population processes, such as retention of ancestral polymorphism or secondary contact, can also explain discordant genealogies, even in fully co-speciating taxa. The relatively simple biogeographic arrangement of the Galápagos archipelago, compared with mainland biomes, provides a framework to identify stochastic and evolutionary informative components of genealogic data in these recently diverged organisms.

Results

Mitochondrial DNA sequences were obtained for four species of Galápagos mockingbirds and three sympatric species of ectoparasites - two louse and one mite species. These data were complemented with nuclear EF1α sequences in selected samples of parasites and with information from microsatellite loci in the mockingbirds. Mitochondrial sequence data revealed differences in population genetic diversity between all taxa and varying degrees of topological congruence between host and parasite lineages. A very low level of genetic variability and lack of congruence was found in one of the louse parasites, which was excluded from subsequent joint analysis of mitochondrial data. The reconciled multi-species tree obtained from the analysis is congruent with both the nuclear data and the geological history of the islands.

Conclusions

The gene genealogies of Galápagos mockingbirds and two of their ectoparasites show strong phylogeographic correlations, with instances of incongruence mostly explained by ancestral genetic polymorphism. A third parasite genealogy shows low levels of genetic diversity and little evidence of co-phylogeny with their hosts. These differences can mostly be explained by variation in life-history characteristics, primarily host specificity and dispersal capabilities. We show that pooling genetic data from organisms living in close ecological association reveals a more accurate phylogeographic history for these taxa. Our results have implications for the conservation and taxonomy of Galápagos mockingbirds and their parasites.  相似文献   
42.
Recent identification of the modular CLS motifs responsible for cyclins A and E localization on centrosomes has revealed a tight linkage between the nuclear and centrosomal cycles. These G1/S cyclins must localize on the centrosome in order for DNA replication to occur in the nucleus, whereas essential DNA replication factors also function on the centrosome to prevent centrosome overduplication. Both events are dependent on the presence of an intact CLS within each cyclin. Here we compare the cyclins A and E CLSs at the structural and functional levels and identify a new cyclin A CLS mutant that disrupts all CLS functions and reduces the affinity of cyclin A for Cdk2. Analysis of interactions of the CLS motif within the cyclin molecules highlights the importance of the cyclin CBOX1 region for Cdk2 binding.Key words: cyclin A, cyclin E, Cdk2, centrosome, CLS, PSTAIRE, DNA synthesis  相似文献   
43.

Background

The Vaccine Assessment using Linked Data (VALiD) trial compared opt-in and opt-out parental consent for a population-based childhood vaccine safety surveillance program using data linkage. A subsequent telephone interview of all households enrolled in the trial elicited parental intent regarding the return or non-return of reply forms for opt-in and opt-out consent. This paper describes the rationale for the trial and provides an overview of the design and methods.

Methods/Design

Single-centre, single-blind, randomised controlled trial (RCT) stratified by firstborn status. Mothers who gave birth at one tertiary South Australian hospital were randomised at six weeks post-partum to receive an opt-in or opt-out reply form, along with information explaining data linkage. The primary outcome at 10 weeks post-partum was parental participation in each arm, as indicated by the respective return or non-return of a reply form (or via telephone or email response). A subsequent telephone interview at 10 weeks post-partum elicited parental intent regarding the return or non-return of the reply form, and attitudes and knowledge about data linkage, vaccine safety, consent preferences and vaccination practices. Enrolment began in July 2009 and 1,129 households were recruited in a three-month period. Analysis has not yet been undertaken. The participation rate and selection bias for each method of consent will be compared when the data are analysed.

Discussion

The VALiD RCT represents the first trial of opt-in versus opt-out consent for a data linkage study that assesses consent preferences and intent compared with actual opting in or opting out behaviour, and socioeconomic factors. The limitations to generalisability are discussed.

Trial registration

Australian New Zealand Clinical Trials Registry ACTRN12610000332022  相似文献   
44.
In this paper, by using combination of molecular and chromosomal markers, populations of Polyommatus (Agrodiaetus) karindus (Riley, 1921) from north-west and central Iran are analyzed. It has been found that taxon usually identified as Polyommatus (Agrodiaetus) karindus is represented in Iran by two geographically separated groups of individuals, strongly differentiated by their karyotypes and mitochondrial haplotypes. It is demonstrated that populations from NW Iran have the haploid chromosome number n = 68, while the haploid chromosome number of Polyommatus (Agrodiaetus) karindus from central Iran is found to be n = 73. Phylogenetic analysis revealed that these groups also differ by at least eight nucleotide substitutions in a 690 bp fragment of the mitochondrial COI gene and form separated groups of clusters in Bayesian inference tree. Thus, population entities from central Iran are described here as a new subspecies Polyommatus (Agrodiaetus) karindus saravandi ssp. n. Strong chromosomal and molecular differentiation are confirmed between Polyommatus (Agrodiaetus) karindus and its sister species, Polyommatus (Agrodiaetus) dama (Staudinger, 1892).  相似文献   
45.
Guanine (G)-rich oligodeoxyribonucleotides (ODNs) can form undesired complexes by self association through non-Watson–Crick interactions. These aggregates can compromise performance of DNA probes and make genetic analysis unpredictable. We found that the 8-aza-7-deazaguanine (PPG), a pyrazolo[3,4-d]pyrimidine analog, reduces guanine self association of G-rich ODNs. In the PPG heterocycle, the N-7 and C-8 atoms of G are interposed. This leaves the ring system with an electron density similar to G, but prevents Hoogsteen-bonding associated with N-7. ODNs containing multiple PPG bases were easily prepared using a dimethylformamidine-protected phosphoramidite reagent. Substitution of PPG for G in ODNs allowed formation of more stable DNA duplexes. When one or more PPGs were substituted for G in ODNs containing four or more consecutive Gs, G aggregation was eliminated. Substitution of PPG for G also improved discrimination of G/A, G/G and G/T mismatches in Watson–Crick hybrids. Use of PPG in fluorogenic minor groove binder probes was also explored. PPG prevented aggregation in MGB probes (MGBTM is a trademark of Epoch Biosciences) and allowed use of G-rich sequences. An increased signal was observed in 5′-PPG probes due to reduced quenching of fluorescein by PPG. In summary, substitution of PPG for G enhances affinity, specificity, sensitivity and predictability of G-rich DNA probes.  相似文献   
46.

Background

Seattle Biomedical Research Institute (SBRI) as part of the Leishmania Genome Network (LGN) is sequencing chromosomes of the trypanosomatid protozoan species Leishmania major. At SBRI, chromosomal sequence is annotated using a combination of trained and untrained non-consensus gene-prediction algorithms with ARTEMIS, an annotation platform with rich and user-friendly interfaces.

Results

Here we describe a methodology used to import results from three different protein-coding gene-prediction algorithms (GLIMMER, TESTCODE and GENESCAN) into the ARTEMIS sequence viewer and annotation tool. Comparison of these methods, along with the CODON USAGE algorithm built into ARTEMIS, shows the importance of combining methods to more accurately annotate the L. major genomic sequence.

Conclusion

An improvised and powerful tool for gene prediction has been developed by importing data from widely-used algorithms into an existing annotation platform. This approach is especially fruitful in the Leishmania genome project where there is large proportion of novel genes requiring manual annotation.
  相似文献   
47.
Discordance between entities revealed by nuclear versus mitochondrial genes is a common phenomenon in evolutionary and taxonomic studies. However, little attention has been paid to analysis of how such discordant entities correspond to traditional species detected through investigation of their morphology, ecology, and distribution. Here, we used one mitochondrial (COI, DNA barcode fragment) and four nuclear (CAD, Ca‐ATPase, arginine kinase, wg) genes to analyze the genetic structure of the taxonomically well‐studied butterfly genus Brenthis (Lepidoptera, Nymphalidae). Analysis of COI revealed multiple diverged allopatric and sympatric mitochondrial lineages within the known Brenthis species hinting at possible presence of unrecognized cryptic species. However, these multiple‐species hypotheses were not supported by further studies of nuclear genes and phenotypic traits. The discovered mitochondrial lineages did not correspond to the clusters revealed by nuclear genes. Simultaneously, we found a complete congruence between (a) traditional species boundaries, (b) clusters recognized by nuclear genes, and (c) clusters identified via cladistic analysis of phenotypic traits (genitalia and wing pattern characters, ecological preferences, and chromosome numbers). We conclude that in case of the genus Brenthis, nuclear genes rather than mtDNA barcodes reveal real species boundaries. Additionally, we suggest to support each DNA barcode‐based taxonomic conclusion by analysis of phased alleles of nuclear genes, avoiding widely used practice of nuclear and mitochondrial genes concatenation without any examination of interaction of these different types of data.  相似文献   
48.
At the turn of the 21st century, the use of molecular and molecular cytogenetic methods led to revolutionary advances in systematics of insects and other arthropods. Analysis of nuclear and mitochondrial genes, as well as investigation of structural rearrangements in the mitochondrial chromosome convincingly supported the Pancrustacea hypothesis, according to which insects originated directly from crustaceans, whereas myriapods are not closely related to them. The presence of the specific telomeric motif TTAGG confirmed the monophyletic origin of arthropods (Arthropoda) and the assignment of tongue worms (Pentastomida) to this type. Several different types of telomeric sequences have been found within the class of insects. Investigation of the molecular organization of these sequences may shed light on the relationships between the orders Diptera, Siphonaptera, and Mecoptera and on the origin of such enigmatic groups as the orders Strepsiptera, Zoraptera and suborder Coleorrhyncha.  相似文献   
49.
The skeleton and musculature of male genitalia were studied in species of a model butterfly group (subtribe Polyommatina, Lycaenidae). In total, we analyzed 45 species of the tribe Polyommatini most of which were previously used in the molecular phylogenetic study (Talavera et al., 2013). The studied morphological characters were mapped on the molecular trees, which allowed us to reveal trends of morphological changes and to estimate the age of their origin. As a result, chronology of evolution of skeleton and musculature traits was established. It was shown that periods of slow morphological evolution alternated in the subtribe Polyommatina with those of a high rate of origin of new traits. For example, topography of the intravalvar muscles has not changed for 26 MY preserving their initial fan-shaped attachment. The evolution of intravalvar muscles started 10 MYA, proceeded slowly during the first 5 MY, and then accelerated during the last 5 MY resulting in the extensive splitting of the musculature in most monophyletic lineages. Mapping the morphological characters on the phylogeny demonstrated that the rates of skeleton and muscle evolution within the skeleton/musculature apparatus were different. In most cases the intravalvar musculature evolved much faster than the skeleton. The cladistic interpretation of states of morphological traits was found to be consistent with phylogenetic reconstructions based on analysis of multiple molecular markers. Moreover, morphological synapomorphies were found for the lineages Alpherakya + Glabroculus and Aricia + (Alpherakya + Glabroculus), which had low statistical support in molecular phylogenetic analysis. Additionally, in some cases molecular studies helped to reveal trends in the evolution of morphological traits. For example, the unpaired uncus and the compact juxta are not plesiomorphic for Cupidina as previously thought; instead, they were shown to have evolved secondarily within this subtribe.  相似文献   
50.
It is well known that closely related sympatric species are usually more different in characters involved in species recognition (e.g., in visual and acoustic signals) than allopatric species of the same evolutionary age. In this article I call this phenomenon Dobzhansky's rule in accordance with the name of the scientist who first discovered it. There are two alternative explanations for this pattern. Under hypothesis of reinforcement by Dobzhansky, these species-specific differences evolve in situ, exactly in zone of overlap between two populations. Under hypothesis of differential fusion by Templeton, the differences originate in geographically separated regions, and only those populations that have evolved such differences can persist in secondary sympatry. These evolutionary scenarios are significantly different. The scenario by Dobzhansky is an essentially sympatric model, in which natural selection reinforces pre-zygotic isolation between divergent populations by selecting against unfit hybrids. The scenario by Templeton is based on classic allopatric speciation model that consider the formation of reproductive isolation to be a by-product of divergent evolution. In this work we show that the sympatric distribution of sister taxa of Agrodiaetus butterflies strongly correlates with differences in male wing colour. We also use a new quantitative phylogenetic test to distinguish between the models by Dobzhansky and by Templeton and to demonstrate that the pattern observed is, most likely, the result of reinforcement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号