首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3063篇
  免费   299篇
  国内免费   3篇
  3365篇
  2023年   30篇
  2022年   51篇
  2021年   121篇
  2020年   65篇
  2019年   81篇
  2018年   89篇
  2017年   71篇
  2016年   120篇
  2015年   171篇
  2014年   171篇
  2013年   207篇
  2012年   229篇
  2011年   214篇
  2010年   146篇
  2009年   134篇
  2008年   158篇
  2007年   162篇
  2006年   141篇
  2005年   157篇
  2004年   107篇
  2003年   86篇
  2002年   75篇
  2001年   35篇
  2000年   25篇
  1999年   22篇
  1998年   24篇
  1997年   13篇
  1996年   11篇
  1995年   16篇
  1994年   12篇
  1992年   19篇
  1991年   19篇
  1990年   19篇
  1989年   28篇
  1988年   23篇
  1987年   22篇
  1986年   18篇
  1985年   12篇
  1984年   10篇
  1983年   11篇
  1982年   18篇
  1981年   16篇
  1980年   18篇
  1979年   13篇
  1976年   15篇
  1972年   9篇
  1971年   11篇
  1969年   10篇
  1968年   11篇
  1967年   9篇
排序方式: 共有3365条查询结果,搜索用时 0 毫秒
51.

Background  

MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions.  相似文献   
52.
Microbiota niches have space and/or nutrient restrictions, which has led to the coevolution of cooperation, specialisation, and competition within the population. Different animal and environmental niches contain defined resident microbiota that tend to be stable over time and offer protection against undesired intruders. Yet fluxes can occur, which alter the composition of a bacterial population. In humans, the microbiota are now considered a key contributor to maintenance of health and homeostasis, and its alteration leads to dysbiosis. The bacterial type VI secretion system (T6SS) transports proteins into the environment, directly into host cells or can function as an antibacterial weapon by killing surrounding competitors. Upon contact with neighbouring cells, the T6SS fires, delivering a payload of effector proteins. In the absence of an immunity protein, this results in growth inhibition or death of prey leading to a competitive advantage for the attacker. It is becoming apparent that the T6SS has a role in modulating and shaping the microbiota at multiple levels, which is the focus of this review. Discussed here is the T6SS, its role in competition, key examples of its effect upon the microbiota, and future avenues of research.  相似文献   
53.
Many tropical plant species show wide intra-population variation in reproductive timing, resulting in the protracted presence of flowering and fruiting individuals. Various eco-evolutionary drivers have been proposed as ultimate causes for asynchronous phenology, yet little is known about the proximate factors that control reproductive onset among individuals or that influence the proportion of trees producing new inflorescences within a population. We employed a nine-year phenological record from 178 individuals of the hyperdominant, asynchronously flowering canopy palm, Oenocarpus bataua (Arecaceae)¸ to assess whether resource-related variables influence individual- and population-level flowering phenology. Among individuals, access to sunlight increased rates of inflorescence production, while the presence of resource sinks related to current investment in reproduction—developing infructescences—reduced the probability of producing new inflorescences. At the population level, climate anomalies induced by El Niño Southern Oscillation (ENSO) affected the proportion of the population producing inflorescences through time. Moreover, the effects of ENSO anomalies on flowering patterns depended on the prevalence of developing infructescences in the population, with stronger effects in periods of low developing-infructescence frequency. Taken together, these results suggest that resource-related variables can drive phenological differences among individuals and mediate population-level responses to larger-scale variables, such as climate anomalies. Consequently, a greater focus on the role of resource levels as endogenous cues for reproduction might help explain the frequent aseasonal phenological patterns observed among tropical plants, particularly those showing high intra-population asynchrony.  相似文献   
54.
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.  相似文献   
55.
56.
NADPH-cytochrome c (P-450) reductase from liver microsomes of phenobarbital-treated rats has been purified in a single step by affinity chromatography on agarose-hexane-adenosine 2',5'-diphosphate. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, enzyme assay, and radioimmunoassay the protein obtained by this single step procedure is as pure as that isolated by multicolumn procedures.  相似文献   
57.
The region of chromosome 2 encompassed by the polymorphic markers D2S378 (centromeric) and D2S391 (telomeric) spans an approximately 10-cM distance in cytogenetic bands 2p15-p21. This area is frequently involved in cytogenetic alterations in human cancers. It also harbors the genes for several genetic disorders, including Type I hereditary nonpolyposis colorectal cancer (HNPCC), familial male precocious puberty (FMPP), Carney complex (CNC), Doyne's honeycomb retinal dystrophy (DHRD), and one form of familial dyslexia (DYX-3). Only a handful of known genes have been mapped to 2p16. These include MSH2, which is responsible for HNPCC, FSHR, the gene responsible for FMPP, EFEMP-1, the gene mutated in DHRD, GTBP, a DNA repair gene, and SPTBN1, nonerythryocytic beta-spectrin. The genes for CNC and DYX-3 remain unknown, due to lack of a contig of this region and its underrepresentation in the existing maps. This report presents a yeast- and bacterial-artificial chromosome (YAC and BAC, respectively) resource for the construction of a sequence-ready map of 2p15-p21 between the markers D2S378 and D2S391 at the centromeric and telomeric ends, respectively. The recently published Genemap'98 lists 146 expressed sequence tags (ESTs) in this region; we have used our YAC-BAC map to place each of these ESTs within a framework of 40 known and 3 newly cloned polymorphic markers and 37 new sequence-tagged sites. This map provides an integration of genetic, radiation hybrid, and physical mapping information for the region corresponding to cytogenetic bands 2p15-p21 and is expected to facilitate the identification of disease genes from the area.  相似文献   
58.
Normotensive adults homozygous for glycine (Gly) of the Arg16/Gly beta2-adrenergic-receptor polymorphism have 1) greater forearm beta2-receptor mediated vasodilation and 2) a higher heart rate (HR) response to isometric handgrip than arginine (Arg) homozygotes. To test the hypothesis that the higher HR response in Gly16 subjects serves to maintain the pressor response [increased cardiac output (CO)] in the setting of augmented peripheral vasodilation to endogenous catecholamines, we measured continuous HR (ECG), arterial pressure (Finapres), and CO (transthoracic echocardiography) during isometric, 40% submaximal handgrip to fatigue in healthy subjects homozygous for Gly (n = 30; mean age +/- SE: 30 +/- 1.2, 13 women) and Arg (n = 17, age 30 +/- 1.6, 11 women). Resting data were similar between groups. Handgrip produced similar increases in arterial pressure and venous norepinephrine and epinephrine concentrations; however, HR increased more in the Gly group (60.1 +/- 4.3% increase from baseline vs. 45.5 +/- 3.9%, P = 0.03), and this caused CO to be higher (Gly: 7.6 +/- 0.3 l/m vs. Arg: 6.5 +/- 0.3 l/m, P = 0.03), whereas the decrease in systemic vascular resistance in the Gly group did not reach significance (P = 0.09). We conclude that Gly16 homozygotes generate a higher CO to maintain the pressor response to handgrip. The influence of polymorphic variants in the beta2-adrenergic receptor gene on the cardiovascular response to sympathoexcitation may have important implications in the development of hypertension and heart failure.  相似文献   
59.
Significant cell damage occurs during cryopreservation resulting in a decreased number of viable and functional cells post-thawing. Recent studies have correlated the unsuccessful outcome of regenerative therapies with poor cell viability after cryopreservation. Cell damage from ice recrystallization during freeze-thawing is one cause of decreased viability after cryopreservation. We have assessed the ability of two C-AFGPs that are potent inhibitors of ice recrystallization to increase cell viability after cryopreservation. Our results indicate that a 1-1.5 mg/mL (0.5-0.8 mM) solution of C-AFGP 1 is an excellent alternative to a 2.5% DMSO solution for the cryopreservation of human embryonic liver cells.  相似文献   
60.
W. Brett Mattingly  S. Luke Flory 《Oikos》2011,120(7):1083-1091
Variation in plant quality provides a basis for oviposition site selection for a variety of insects. Of the plant traits that influence plant–insect interactions, plant architecture has received little attention despite its putative role in modulating oviposition behavior. In a common garden comprised of native and non‐native plant species, we assessed how host plant architecture and identity influenced the oviposition behavior of 17‐year periodical cicadas (Homoptera: Cicadidae: Magicicada). On each host, we quantified the availability of branches suitable for oviposition and compared those measures with the branches used by ovipositing cicadas. Using this approach, we determined how the structural attributes of plants (i.e. branch diameter, length and incline) affected oviposition site selection. We then related cicada oviposition preferences to offspring performance by quantifying egg hatching success. On each host species, cicadas selectively used broader and longer branches for oviposition, suggesting that branch architecture provides a basis for oviposition behavior irrespective of plant identity. Broader and longer branches were more abundant on native than on non‐native hosts in our study, contributing to greater oviposition loads among the native species. Egg hatching success was similar among native and non‐native hosts. However, it is possible that the use of native plants for oviposition could enhance offspring output because native hosts generally contained more viable eggs per egg nest and more egg nests per plant. While previous accounts of cicada oviposition preferences have focused on differences in oviposition loads among hosts, our evaluation of within‐host branch selection by ovipositing cicadas helps to clarify oviposition preferences at a higher resolution and demonstrates that plant architecture provides an important basis for oviposition behavior. Furthermore, because branch structure can differ substantially among host species, our results suggest that periodical cicadas may be sensitive to the changes in plant composition that often result from non‐native plant invasions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号