首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2312篇
  免费   217篇
  国内免费   2篇
  2024年   8篇
  2023年   30篇
  2022年   49篇
  2021年   114篇
  2020年   65篇
  2019年   76篇
  2018年   80篇
  2017年   62篇
  2016年   111篇
  2015年   153篇
  2014年   154篇
  2013年   173篇
  2012年   200篇
  2011年   174篇
  2010年   116篇
  2009年   102篇
  2008年   129篇
  2007年   115篇
  2006年   102篇
  2005年   111篇
  2004年   78篇
  2003年   52篇
  2002年   53篇
  2001年   23篇
  2000年   7篇
  1999年   11篇
  1998年   13篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   9篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   12篇
  1987年   5篇
  1986年   7篇
  1985年   4篇
  1982年   3篇
  1980年   5篇
  1978年   3篇
  1971年   5篇
  1968年   4篇
  1963年   4篇
  1950年   3篇
  1938年   2篇
  1933年   2篇
  1919年   2篇
排序方式: 共有2531条查询结果,搜索用时 15 毫秒
81.
It is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption (SSA), which has been applied across a large range of temporal and spatial scales including many at which the validity of the assumption is likely to be violated. However, the errors associated with improperly applying SSA to estimate C turnover time and its covariance with climate as well as ecosystem C sequestrations have yet to be fully quantified. Here, we developed a novel model‐data fusion framework and systematically analyzed the SSA‐induced biases using time‐series data collected from 10 permanent forest plots in the eastern China monsoon region. The results showed that (a) the SSA significantly underestimated mean turnover times (MTTs) by 29%, thereby leading to a 4.83‐fold underestimation of the net ecosystem productivity (NEP) in these forest ecosystems, a major C sink globally; (b) the SSA‐induced bias in MTT and NEP correlates negatively with forest age, which provides a significant caveat for applying the SSA to young‐aged ecosystems; and (c) the sensitivity of MTT to temperature and precipitation was 22% and 42% lower, respectively, under the SSA. Thus, under the expected climate change, spatiotemporal changes in MTT are likely to be underestimated, thereby resulting in large errors in the variability of predicted global NEP. With the development of observation technology and the accumulation of spatiotemporal data, we suggest estimating MTTs at the disequilibrium state via long‐term data assimilation, thereby effectively reducing the uncertainty in ecosystem C sequestration estimations and providing a better understanding of regional or global C cycle dynamics and C‐climate feedback.  相似文献   
82.
Understanding the effects of global change in terrestrial communities requires an understanding of how limiting resources interact with plant traits to affect productivity. Here, we focus on nitrogen and ask whether plant community nitrogen uptake rate is determined (a) by nitrogen availability alone or (b) by the product of nitrogen availability and fine‐root mass. Surprisingly, this is not empirically resolved. We performed controlled microcosm experiments and reanalyzed published pot experiments and field data to determine the relationship between community‐level nitrogen uptake rate, nitrogen availability, and fine‐root mass for 46 unique combinations of species, nitrogen levels, and growing conditions. We found that plant community nitrogen uptake rate was unaffected by fine‐root mass in 63% of cases and saturated with fine‐root mass in 29% of cases (92% in total). In contrast, plant community nitrogen uptake rate was clearly affected by nitrogen availability. The results support the idea that although plants may over‐proliferate fine roots for individual‐level competition, it comes without an increase in community‐level nitrogen uptake. The results have implications for the mechanisms included in coupled carbon‐nitrogen terrestrial biosphere models (CN‐TBMs) and are consistent with CN‐TBMs that operate above the individual scale and omit fine‐root mass in equations of nitrogen uptake rate but inconsistent with the majority of CN‐TBMs, which operate above the individual scale and include fine‐root mass in equations of nitrogen uptake rate. For the much smaller number of CN‐TBMs that explicitly model individual‐based belowground competition for nitrogen, the results suggest that the relative (not absolute) fine‐root mass of competing individuals should be included in the equations that determine individual‐level nitrogen uptake rates. By providing empirical data to support the assumptions used in CN‐TBMs, we put their global climate change predictions on firmer ground.  相似文献   
83.
Intertidal zone mussels can face threats from a variety of predatory species during high and low tides, and they must balance the threat of predation against other needs such as feeding and aerobic respiration. Black oystercatchers (Haematopus bachmani) on the Pacific coast of North America can depend on the mussel Mytilus californianus for a substantial portion of their diet. Observations suggest that oystercatchers tend to focus on mussels beginning to gape their valves during rising tides, following periods of aerial emersion. We present detailed, autonomous field measurements of the dynamics of three such predation events in the rocky intertidal zone. We measured accelerations of up to 4 g imposed on mussels, with handling times of 115–290 s required to open the shell and remove the majority of tissue. In each case a single oystercatcher attacked a mussel that had gaped the shell valves slightly wider than its neighbors as the rising tide began to splash the mussel bed, but no other obvious characteristic of the mussels, such as body temperature or orientation, could be linked to the oystercatcher's individual prey choice.  相似文献   
84.
85.
Fine root decomposition constitutes a critical yet poorly understood flux of carbon and nutrients in terrestrial ecosystems. Here, we present the first large‐scale synthesis of species trait effects on the early stages of fine root decomposition at both global and local scales. Based on decomposition rates for 279 plant species across 105 studies and 176 sites, we found that mycorrhizal association and woodiness are the best categorical traits for predicting rates of fine root decomposition. Consistent positive effects of nitrogen and phosphorus concentrations and negative effects of lignin concentration emerged on decomposition rates within sites. Similar relationships were present across sites, along with positive effects of temperature and moisture. Calcium was not consistently related to decomposition rate at either scale. While the chemical drivers of fine root decomposition parallel those of leaf decomposition, our results indicate that the best plant functional groups for predicting fine root decomposition differ from those predicting leaf decomposition.  相似文献   
86.
Lyme arthritis (LA), a late disease manifestation of Borrelia burgdorferi infection, usually resolves with antibiotic therapy. However, some patients develop proliferative synovitis lasting months to several years after spirochetal killing, called postinfectious LA. In this study, we phenotyped haematopoietic and stromal cell populations in the synovial lesion ex vivo and used these findings to generate an in vitro model of LA using patient‐derived fibroblast‐like synoviocytes (FLS). Ex vivo analysis of synovial tissue revealed high abundance of IFNγ‐producing T cells and NK cells. Similar to marked IFNγ responses in tissue, postinfectious LA synovial fluid also had high levels of IFNγ. HLA‐DR‐positive FLS were present throughout the synovial lesion, particularly in areas of inflammation. FLS stimulated in vitro with Bburgdorferi, which were similar to conditions during infection, expressed 68 genes associated primarily with innate immune activation and neutrophil recruitment. In contrast, FLS stimulated with IFNγ, which were similar to conditions in the postinfectious phase, expressed >2,000 genes associated with pathogen sensing, inflammation, and MHC Class II antigen presentation, similar to the expression profile in postinfectious synovial tissue. Furthermore, costimulation of FLS with Bburgdorferi and IFNγ induced greater expression of IL‐6 and other innate immune response proteins and genes than with IFNγ stimulation alone. These results suggest that Bburgdorferi infection, in combination with IFNγ, initiates the differentiation of FLS into a highly inflammatory phenotype. We hypothesise that overexpression of IFNγ by lymphocytes within synovia perpetuates these responses in the postinfectious period, causing proliferative synovitis and stalling appropriate repair of damaged tissue.  相似文献   
87.
Human impact is near pervasive across the planet and studies of wildlife populations free of anthropogenic mortality are increasingly scarce. This is particularly true for large carnivores that often compete with and, in turn, are killed by humans. Accordingly, the densities at which carnivore populations occur naturally, and their role in shaping and/or being shaped by natural processes, are frequently unknown. We undertook a camera-trap survey in the Sabi Sand Game Reserve (SSGR), South Africa, to examine the density, structure and spatio-temporal patterns of a leopard Panthera pardus population largely unaffected by anthropogenic mortality. Estimated population density based on spatial capture–recapture models was 11.8 ± 2.6 leopards/100 km2. This is likely close to the upper density limit attainable by leopards, and can be attributed to high levels of protection (particularly, an absence of detrimental edge effects) and optimal habitat (in terms of prey availability and cover for hunting) within the SSGR. Although our spatio-temporal analyses indicated that leopard space use was modulated primarily by “bottom-up” forces, the population appeared to be self-regulating and at a threshold that is unlikely to change, irrespective of increases in prey abundance. Our study provides unique insight into a naturally-functioning carnivore population at its ecological carrying capacity. Such insight can potentially be used to assess the health of other leopard populations, inform conservation targets, and anticipate the outcomes of population recovery attempts.  相似文献   
88.
Protoporphyrin IX‐triplet state lifetime technique (PpIX‐TSLT) is a method used to measure oxygen (PO2) in human cells. The aim of this study was to assess the technical feasibility and safety of measuring oxygen‐dependent delayed fluorescence of 5‐aminolevulinic acid (ALA)‐induced PpIX during upper gastrointestinal (GI) endoscopy. Endoscopic delayed fluorescence measurements were performed 4 hours after oral administration of ALA in healthy volunteers. The ALA dose administered was 0, 1, 5 or 20 mg/kg. Measurements were performed at three mucosal spots in the gastric antrum, duodenal bulb and descending duodenum with the catheter above the mucosa and while applying pressure to induce local ischemia and monitor mitochondrial respiration. During two endoscopies, measurements were performed both before and after intravenous administration of butylscopolamine. Delayed fluorescence measurements were successfully performed during all 10 upper GI endoscopies. ALA dose of 5 mg/kg showed adequate signal‐to‐noise ratio (SNR) values >20 without side effects. All pressure measurements showed significant prolongation of delayed fluorescence lifetime compared to measurements performed without pressure (P < .001). Measurements before and after administration of butylscopolamine did not differ significantly in the duodenal bulb and descending duodenum. Measurements of oxygen‐dependent delayed fluorescence of ALA‐induced PpIX in the GI tract during upper GI endoscopy are technically feasible and safe.  相似文献   
89.
Distribution models are increasingly being used to understand how landscape and climatic changes are affecting the processes driving spatial and temporal distributions of plants and animals. However, many modeling efforts ignore the dynamic processes that drive distributional patterns at different scales, which may result in misleading inference about the factors influencing species distributions. Current occupancy models allow estimation of occupancy at different scales and, separately, estimation of immigration and emigration. However, joint estimation of local extinction, colonization, and occupancy within a multi‐scale model is currently unpublished. We extended multi‐scale models to account for the dynamic processes governing species distributions, while concurrently modeling local‐scale availability. We fit the model to data for lark buntings and chestnut‐collared longspurs in the Great Plains, USA, collected under the Integrated Monitoring in Bird Conservation Regions program. We investigate how the amount of grassland and shrubland and annual vegetation conditions affect bird occupancy dynamics and local vegetation structure affects fine‐scale occupancy. Buntings were prevalent and longspurs rare in our study area, but both species were locally prevalent when present. Buntings colonized sites with preferred habitat configurations, longspurs colonized a wider range of landscape conditions, and site persistence of both was higher at sites with greener vegetation. Turnover rates were high for both species, quantifying the nomadic behavior of the species. Our model allows researchers to jointly investigate temporal dynamics of species distributions and hierarchical habitat use. Our results indicate that grassland birds respond to different covariates at landscape and local scales suggesting different conservation goals at each scale. High turnover rates of these species highlight the need to account for the dynamics of nomadic species, and our model can help inform how to coordinate management efforts to provide appropriate habitat configurations at the landscape scale and provide habitat targets for local managers.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号