首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8240篇
  免费   1049篇
  国内免费   5篇
  2021年   192篇
  2020年   104篇
  2019年   130篇
  2018年   132篇
  2017年   104篇
  2016年   193篇
  2015年   277篇
  2014年   317篇
  2013年   388篇
  2012年   472篇
  2011年   443篇
  2010年   266篇
  2009年   255篇
  2008年   354篇
  2007年   315篇
  2006年   318篇
  2005年   307篇
  2004年   291篇
  2003年   215篇
  2002年   248篇
  2001年   199篇
  2000年   197篇
  1999年   184篇
  1998年   112篇
  1997年   64篇
  1996年   79篇
  1995年   92篇
  1994年   83篇
  1993年   80篇
  1992年   153篇
  1991年   155篇
  1990年   133篇
  1989年   151篇
  1988年   147篇
  1987年   126篇
  1986年   114篇
  1985年   99篇
  1984年   90篇
  1983年   90篇
  1981年   71篇
  1979年   101篇
  1978年   72篇
  1977年   78篇
  1976年   70篇
  1975年   77篇
  1974年   95篇
  1973年   76篇
  1972年   80篇
  1971年   72篇
  1970年   67篇
排序方式: 共有9294条查询结果,搜索用时 31 毫秒
31.
32.
Functional domains of adenovirus type 5 E1a proteins   总被引:84,自引:0,他引:84  
J W Lillie  P M Loewenstein  M R Green  M Green 《Cell》1987,50(7):1091-1100
  相似文献   
33.
34.
Filter matings between E. coli K-12 strains carrying an F'::Tn5,Tn9 factor with H. influenzae Rd strains gave rise to kanamycin-chloramphenicol-resistant H. influenzae strains at a frequency of approximately 10(-6). Transfer of the F' factor to H. influenzae was verified by expression of unselected markers in H. influenzae (lac+ or cotransfer of the nonselected antibiotic resistance), physical presence of a high-molecular-weight plasmid in recipient H. influenzae cells, and detection by Southern hybridization analysis of DNA sequences specific for the F' factor replication and partition functions in recipient H. influenzae cells. H. influenzae (F' Tn5,Tn9) strains were capable of transferring kanamycin and chloramphenicol resistances to other H. influenzae strains and were capable of mobilizing H. influenzae chromosomal markers at a low frequency. Insertion of a Tn5 element in the H. influenzae genome near the novobiocin resistance gene increased the frequency of transfer of novobiocin resistance about 30-fold. Transfer of other chromosomal markers also increased, although to a lesser extent, and ordered transfer of chromosomal markers could be demonstrated. Gene transfer was insensitive to DNase I, and transfer of chromosomal (but not F' factor) markers was dependent on the H. influenzae rec-1 and rec-2 gene functions.  相似文献   
35.
The gene for the hole-forming toxin aerolysin from Aeromonas hydrophila was sequenced. Although most of the sequence seems unrelated to that of Staphylococcus aureus alpha-toxin, both proteins are very hydrophilic, and they each contain a nearly identical string of 10 amino acids.  相似文献   
36.
A three-dimensional model of yeast alcohol dehydrogenase, based on the homologous horse liver enzyme, was used to compare the substrate binding pockets of the three isozymes (I, II, and III) from Saccharomyces cerevisiae and the enzyme from Schizosaccharomyces pombe. Isozyme I and the S. pombe enzyme have methionine at position 294 (numbered as in the liver enzyme, corresponding to 270 in yeast), whereas isozymes II and III have leucine. Otherwise the active sites of the S. cerevisiae enzymes are the same. All four wild-type enzymes were produced from the cloned genes. In addition, oligonucleotide-directed mutagenesis was used to change Met-294 in alcohol dehydrogenase I to leucine. The mechanisms for all five enzymes were predominantly ordered with ethanol (but partially random with butanol) at pH 7.3 and 30 degrees C. The wild-type alcohol dehydrogenases and the leucine mutant had similar kinetic constants, except that isozyme II had 10-20-fold smaller Michaelis and inhibition constants for ethanol. Thus, residue 294 is not responsible for this difference. Apparently, substitutions outside of the substrate binding pocket indirectly affect the interactions of the alcohol dehydrogenases with ethanol. Nevertheless, the substitution of methionine with leucine in the substrate binding site of alcohol dehydrogenase I produced a 7-10-fold increase in reactivity (V/Km) with butanol, pentanol, and hexanol. The higher activity is due to tighter binding of the longer chain alcohols and to more rapid hydrogen transfer.  相似文献   
37.
We have isolated an expressible full-length cDNA clone encoding murine ERp99, an abundant, conserved transmembrane glycoprotein of the endoplasmic reticulum membrane. ERp99 is synthesized as a 92,475-kDa precursor containing 802 amino acids. It possesses a signal peptide of 21 amino acids which is cleaved cotranslationally. Analysis of the amino acid sequence deduced from the nucleotide sequence of the cDNA clone led us to propose a model for the orientation of ERp99 in the endoplasmic reticulum membrane. In this model, ERp99 possesses one membrane-spanning, stop transfer segment in the N-terminal region. The protein chain passes through the membrane only once, and approximately 75% of the protein remains on the cytoplasmic side of the ER membrane. Comparison of the ERp99 sequence to the sequence of other proteins revealed that ERp99 has extensive homology with the 90-kDa heat shock protein of Saccharomyces cerevisiae (hsp90) and the 83-kDa heat shock protein of Drosophila melanogaster. In addition, the N terminus of mature ERp99 is identical to that of the 94-kDa glucose regulated protein (GRP94) of mammalian cells.  相似文献   
38.
We have used monospecific antisera to two lysosomal membrane glycoproteins, lgp120 and a similar protein, lgp110, to compare the biosynthesis and intracellular transport of lysosomal membrane components, plasma membrane proteins, and lysosomal enzymes. In J774 cells and NRK cells, newly synthesized lysosomal membrane and plasma membrane proteins (the IgG1/IgG2b Fc receptor or influenza virus hemagglutinin) were transported through the Golgi apparatus (defined by acquisition of resistance to endo-beta-N-acetylglucosaminidase H) with the same kinetics (t1/2 = 11-14 min). In addition, immunoelectron microscopy of normal rat kidney cells showed that lgp120 and vesicular stomatitis virus G-protein were present in the same Golgi cisternae demonstrating that lysosomal and plasma membrane proteins were not sorted either before or during transport through the Golgi apparatus. To define the site at which sorting occurred, we compared the kinetics of transport of lysosomal and plasma membrane proteins and a lysosomal enzyme to their respective destinations. Newly synthesized proteins were detected in dense lysosomes (lgp's and beta-glucuronidase) or on the cell surface (Fc receptor or hemagglutinin) after the same lag period (20-25 min), and accumulated at their final destinations with similar kinetics (t1/2 = 30-45 min), suggesting that these two lgp's are not transported to the plasma membrane before reaching lysosomes. This was further supported by measurements of the transport of membrane-bound endocytic markers from the cell surface to lysosomes, which exhibited additional lag periods of 5-15 min and half-times of 1.5-2 h. The time required for transport of newly synthesized plasma membrane proteins to the cell surface, and for the transport of plasma membrane markers from the cell surface to lysosomes would appear too long to account for the rapid transport of lgp's from the Golgi apparatus to lysosomes. Thus, the observed kinetics suggest that lysosomal membrane proteins are sorted from plasma membrane proteins at a post-Golgi intracellular site, possibly the trans Golgi network, before their delivery to lysosomes.  相似文献   
39.
The guanidinium toxin-induced inhibition of the current through voltage-dependent sodium channels was examined for batrachotoxin-modified channels incorporated into planar lipid bilayers that carry no net charge. To ascertain whether a net negative charge exists in the vicinity of the toxin-binding site, we studied the channel closures induced by tetrodotoxin (TTX) and saxitoxin (STX) over a wide range of [Na+]. These toxins carry charges of +1 and +2, respectively. The frequency and duration of the toxin-induced closures are voltage dependent. The voltage dependence was similar for STX and TTX, independent of [Na+], which indicates that the binding site is located superficially at the extracellular surface of the sodium channel. The toxin dissociation constant, KD, and the rate constant for the toxin-induced closures, kc, varied as a function of [Na+]. The Na+ dependence was larger for STX than for TTX. Similarly, the addition of tetraethylammonium (TEA+) or Zn++ increased KD and decreased kc more for STX than for TTX. These differential effects are interpreted to arise from changes in the electrostatic potential near the toxin-binding site. The charges giving rise to this potential must reside on the channel since the bilayers had no net charge. The Na+ dependence of the ratios KDSTX/KDTTX and kcSTX/kcTTX was used to estimate an apparent charge density near the toxin-binding site of about -0.33 e X nm-2. Zn++ causes a voltage-dependent block of the single-channel current, as if Zn++ bound at a site within the permeation path, thereby blocking Na+ movement. There was no measurable interaction between Zn++ at its blocking site and STX or TTX at their binding site, which suggests that the toxin-binding site is separate from the channel entrance. The separation between the toxin-binding site and the Zn++ blocking site was estimated to be at least 1.5 nm. A model for toxin-induced channel closures is proposed, based on conformational changes in the channel subsequent to toxin binding.  相似文献   
40.
Cell mediated immunity to nonlethal Plasmodium yoelli 17X (PY17X-NL) was examined in the CBA/CaJ mouse by adoptive transfer of sensitized T lymphocyte subsets. In intact mice, PY17X-NL causes a self-limiting infection with parasitemia levels ranging from 10 to 25% of total red blood cells. Upon recovery, mice are refractory to subsequent challenge with the homologous parasite. In T cell-depleted mice, PY17X-NL infections are extremely virulent and result in death of the host after parasitemia levels reach 50% or higher. The transfer of either Lyt-1 T cells or Lyt-2 T cells from immune animals into normal, naive animals produced accelerated recovery to subsequent infection. However, this adoptive transfer of immunity by either subset was dependent upon the presence of an I-J+, Lyt-null cell in the immune population. T cell deprivation precluded the ability of animals to control blood-stage infections. When T cell-depleted mice were reconstituted with naive, Ig-negative (T cell-enriched) spleen cells, parasitemia levels were controlled and the parasites were eliminated. When T cell-deprived animals were reconstituted with naive Lyt-1+2-, Ig-negative spleen cells, they experienced twofold higher parasitemias of longer duration than mice receiving unfractionated cells. Two of six of these Lyt-1 mice died of fulminant infections, suggesting that the presence of naive Lyt-2 cells enhances the degree of protection. Immune Lyt-2 T cells were highly protective in T cell-depleted animals. Protection by sensitized Lyt-1 T cells correlated with the induction of a monocytosis. On the other hand, protection by Lyt-2T cells occurred in the absence of monocytosis. The possibility that the immunity induced by each T cell subset is mediated by a different effector mechanism is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号