排序方式: 共有649条查询结果,搜索用时 15 毫秒
61.
Using Meta-BASIC, a highly sensitive method for detection of distant similarity between proteins, we have identified another potential PD-(D/E)XK endonuclease in human herpesvirus 1 (HHV-1) encoded by the UL24 gene. The universal presence of UL24 in completed herpesviral genomes of three major subfamilies, Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae, suggests a fundamental role for this predicted PD-(D/E)XK endonuclease activity in the viral life cycle. 相似文献
62.
Removal of naturally grown human biofilm with an atmospheric pressure plasma jet: An in‐vitro study 下载免费PDF全文
Lukasz Jablonowski Katja Fricke Rutger Matthes Birte Holtfreter Rabea Schlüter Thomas von Woedtke Klaus‐Dieter Weltmann Thomas Kocher 《Journal of biophotonics》2017,10(5):718-726
The removal of biofilm is a prerequisite for a successful treatment of biofilm‐associated diseases. In this study, we compared the feasibility of an atmospheric pressure plasma device with a sonic powered brush to remove naturally grown supragingival biofilm from extracted teeth. Twenty‐four periodontally hopeless teeth were extracted. Argon jet plasma with an oxygen admixture of 1 vol% and a sonically driven brush were used to remove biofilm with application times of 60 s, 180 s and 300 s. The treatment efficiency was assessed with light microscopy, scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The highest biofilm removal rate was observed after an application time of 180 s/300 s with the sonic brush (80.4%/86.2%), plasma (75.5%/89.0%). These observations were confirmed by SEM. According to XPS analysis, plasma treatment decreased the amount of carbon and nitrogen, indicative of an extensive removal of proteins. Plasma treatment of naturally grown biofilm resulted in an effective cleaning of the tooth surface and was comparable to mechanical treatment. Treatment time had a significant influence on plaque reduction. These results showed that plasma could be a useful adjuvant treatment modality in cases where biofilm removal or reduction plays a decisive role, such as periodontitis and peri‐implantitis.
63.
Krawczyk B Naumiuk L Lewandowski K Baraniak A Gniadkowski M Samet A Kur J 《FEMS immunology and medical microbiology》2003,38(3):241-248
Amplification of DNA fragments surrounding rare restriction sites (ADSRRS-fingerprinting) is a novel assay based on suppression of polymerase chain reaction (PCR). This phenomenon allows the amplification of only a limited subset of DNA fragments, since only those with two different oligonucleotides ligated at the ends of complementary DNA strands are amplified in the PCR. The DNA fragments can be easily analyzed on polyacrylamide gels, stained with ethidium bromide. We have implemented this method using a set of clinical Serratia marcescens isolates from three outbreaks ongoing in the Public Hospital in Gdańsk (Poland). Clustering of ADSRRS-fingerprinting data matched epidemiological, microbiological, random amplification of polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) data. Based on this study, we found that there is at least a similar power of discrimination between the present 'gold-standard' PFGE and the novel method, ADSRRS-fingerprinting. Although the ADSRRS-fingerprinting method may appear to be more complex than the RAPD technique, we found it fast and reproducible. 相似文献
64.
Background
Traditionally, it is believed that the native structure of a protein corresponds to a global minimum of its free energy. However, with the growing number of known tertiary (3D) protein structures, researchers have discovered that some proteins can alter their structures in response to a change in their surroundings or with the help of other proteins or ligands. Such structural shifts play a crucial role with respect to the protein function. To this end, we propose a machine learning method for the prediction of the flexible/rigid regions of proteins (referred to as FlexRP); the method is based on a novel sequence representation and feature selection. Knowledge of the flexible/rigid regions may provide insights into the protein folding process and the 3D structure prediction.Results
The flexible/rigid regions were defined based on a dataset, which includes protein sequences that have multiple experimental structures, and which was previously used to study the structural conservation of proteins. Sequences drawn from this dataset were represented based on feature sets that were proposed in prior research, such as PSI-BLAST profiles, composition vector and binary sequence encoding, and a newly proposed representation based on frequencies of k-spaced amino acid pairs. These representations were processed by feature selection to reduce the dimensionality. Several machine learning methods for the prediction of flexible/rigid regions and two recently proposed methods for the prediction of conformational changes and unstructured regions were compared with the proposed method. The FlexRP method, which applies Logistic Regression and collocation-based representation with 95 features, obtained 79.5% accuracy. The two runner-up methods, which apply the same sequence representation and Support Vector Machines (SVM) and Naïve Bayes classifiers, obtained 79.2% and 78.4% accuracy, respectively. The remaining considered methods are characterized by accuracies below 70%. Finally, the Naïve Bayes method is shown to provide the highest sensitivity for the prediction of flexible regions, while FlexRP and SVM give the highest sensitivity for rigid regions.Conclusion
A new sequence representation that uses k-spaced amino acid pairs is shown to be the most efficient in the prediction of the flexible/rigid regions of protein sequences. The proposed FlexRP method provides the highest prediction accuracy of about 80%. The experimental tests show that the FlexRP and SVM methods achieved high overall accuracy and the highest sensitivity for rigid regions, while the best quality of the predictions for flexible regions is achieved by the Naïve Bayes method. 相似文献65.
Csányi G Gajda M Franczyk-Zarow M Kostogrys R Gwoźdź P Mateuszuk L Sternak M Wojcik L Zalewska T Walski M Chlopicki S 《Prostaglandins & other lipid mediators》2012,98(3-4):107-115
Adequate endothelial production of nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and prostacyclin (PGI?) is critical to the maintenance of vascular homeostasis. However, it is not clear whether alterations in each of these vasodilatory pathways contribute to the impaired endothelial function in murine atherosclerosis. In the present study, we analyze the alterations in NO-, EDHF- and PGI?-dependent endothelial function in the thoracic aorta in relation to the development of atherosclerotic plaques in apoE/LDLR?/? mice. We found that in the aorta of 2-month-old apoE/LDLR?/? mice there was no lipid deposition, subendothelial macrophage accumulation; and matrix metalloproteinase (MMP) activity was low, consistent with the absence of atherosclerotic plaques. Interestingly, at this stage the endothelium was already activated and hypertrophic as evidenced by electron microscopy, while acetylcholine-induced NO-dependent relaxation in the thoracic aorta was impaired, with concomitant upregulation of cyclooxygenase-2 (COX-2)/PGI? and EDHF (epoxyeicosatrienoic acids, EETs) pathways. In the aorta of 3-6-month-old apoE/LDLR?/? mice, lipid deposition, macrophage accumulation and MMP activity in the intima were gradually increased, while impairment of NO-dependent function and compensatory upregulation of COX-2/PGI? and EDHF pathways were more accentuated. These results suggest that impairment of NO-dependent relaxation precedes the development of atherosclerosis in the aorta and early upregulation of COX-2/PGI? and EDHF pathways may compensate for the loss of the biological activity of NO. 相似文献
66.
Dominika Czaplinska Lukasz Turczyk Alicja Grudowska Magdalena Mieszkowska Andrea D. Lipinska Andrzej C. Skladanowski Anna J. Zaczek Hanna M. Romanska Rafal Sadej 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
The members of p90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases are downstream effectors of MAPK/ERK pathway that regulate diverse cellular processes including cell growth, proliferation and survival. In carcinogenesis, RSKs are thought to modulate cell motility, invasion and metastasis. Herein, we have studied an involvement of RSKs in FGF2/FGFR2-driven behaviours of mammary epithelial and breast cancer cells. We found that both silencing and inhibiting of FGFR2 attenuated phosphorylation of RSKs, whereas FGFR2 overexpression and/or its stimulation with FGF2 enhanced RSKs activity. Moreover, treatment with ERK, Src and p38 inhibitors revealed that p38 kinase acts as an upstream RSK2 regulator. We demonstrate for the first time that in FGF2/FGFR2 signalling, p38 but not MEK/ERK, indirectly activated RSK2 at Tyr529, which facilitated phosphorylation of its other residues (Thr359/Ser363, Thr573 and Ser380). In contrast to FGF2-triggered signalling, inhibition of p38 in the EGF pathway affected only RSK2-Tyr529, without any impact on the remaining RSK phosphorylation sites. p38-mediated phosphorylation of RSK2-Tyr529 was crucial for the transactivation of residues located at kinase C-terminal domain and linker-region, specifically, in the FGF2/FGFR2 signalling pathway. Furthermore, we show that FGF2 promoted anchorage-independent cell proliferation, formation of focal adhesions and cell migration, which was effectively abolished by treatment with RSKs inhibitor (FMK). These indicate that RSK2 activity is indispensable for FGF2/FGFR2-mediated cellular effects. Our findings identified a new FGF2/FGFR2-p38-RSK2 pathway, which may play a significant role in the pathogenesis and progression of breast cancer and, hence, may present a novel therapeutic target in the treatment of FGFR2-expressing tumours. 相似文献
67.
Sylvia Neumann George E. Campbell Lukasz Szpankowski Lawrence S.B. Goldstein Sandra E. Encalada 《Journal of visualized experiments : JoVE》2014,(92)
Understanding the mechanisms by which molecular motors coordinate their activities to transport vesicular cargoes within neurons requires the quantitative analysis of motor/cargo associations at the single vesicle level. The goal of this protocol is to use quantitative fluorescence microscopy to correlate (“map”) the position and directionality of movement of live cargo to the composition and relative amounts of motors associated with the same cargo. “Cargo mapping” consists of live imaging of fluorescently labeled cargoes moving in axons cultured on microfluidic devices, followed by chemical fixation during recording of live movement, and subsequent immunofluorescence (IF) staining of the exact same axonal regions with antibodies against motors. Colocalization between cargoes and their associated motors is assessed by assigning sub-pixel position coordinates to motor and cargo channels, by fitting Gaussian functions to the diffraction-limited point spread functions representing individual fluorescent point sources. Fixed cargo and motor images are subsequently superimposed to plots of cargo movement, to “map” them to their tracked trajectories. The strength of this protocol is the combination of live and IF data to record both the transport of vesicular cargoes in live cells and to determine the motors associated to these exact same vesicles. This technique overcomes previous challenges that use biochemical methods to determine the average motor composition of purified heterogeneous bulk vesicle populations, as these methods do not reveal compositions on single moving cargoes. Furthermore, this protocol can be adapted for the analysis of other transport and/or trafficking pathways in other cell types to correlate the movement of individual intracellular structures with their protein composition. Limitations of this protocol are the relatively low throughput due to low transfection efficiencies of cultured primary neurons and a limited field of view available for high-resolution imaging. Future applications could include methods to increase the number of neurons expressing fluorescently labeled cargoes. 相似文献
68.
Kuźma L Bruchajzer E Wysokińska H 《Zeitschrift für Naturforschung. C, Journal of biosciences》2008,63(7-8):621-624
Growth and diterpenoid accumulation (salvipisone, ferruginol, aethiopinone and 1-oxoaethiopinone) during the growth cycle of a Salvia sclarea hairy root culture are described. The roots transformed by Agrobacterium rhizogenes (LBA 9402) were cultured in half-strength B5 liquid medium supplemented with 30 g L(-1) sucrose under light (16 h/8 h light/dark). A culture period of 30 days was optimal for both biomass and diterpenoid production. The total content of four diterpenoids in the hairy roots [(27.3 +/- 0.6) mg g(-1) dry weight] was higher than that of roots of field-grown S. sclarea plants [(3.15 +/- 0.15) mg g(-1) dry weight]. In transformed roots, aethiopinone was the main diterpenoid, whereas the principal diterpenoid of natural roots was salvipisone. 相似文献
69.
Hans Lambers Felipe Albornoz Lukasz Kotula Etienne Laliberté Kosala Ranathunge François P. Teste Graham Zemunik 《Plant and Soil》2018,424(1-2):11-33
Background
Mycorrhizal strategies are very effective in enhancing plant acquisition of poorly-mobile nutrients, particularly phosphorus (P) from infertile soil. However, on very old and severely P-impoverished soils, a carboxylate-releasing and P-mobilising cluster-root strategy is more effective at acquiring this growth-limiting resource. Carboxylates are released during a period of only a few days from ephemeral cluster roots. Despite the cluster-root strategy being superior for P acquisition in such environments, these species coexist with a wide range of mycorrhizal species, raising questions about the mechanisms contributing to their coexistence.Scope
We surmise that the coexistence of mycorrhizal and non-mycorrhizal strategies is primarily accounted for by a combination of belowground mechanisms, namely (i) facilitation of P acquisition by mycorrhizal plants from neighbouring cluster-rooted plants, and (ii) interactions between roots, pathogens and mycorrhizal fungi, which enhance the plants’ defence against pathogens. Facilitation of nutrient acquisition by cluster-rooted plants involves carboxylate exudation, making more P available for both themselves and their mycorrhizal neighbours. Belowground nutrient exchanges between carboxylate-exuding plants and mycorrhizal N2-fixing plants appear likely, but require further experimental testing to determine their nutritional and ecological relevance. Anatomical studies of roots of cluster-rooted Proteaceae species show that they do not form a complete suberised exodermis.Conclusions
The absence of an exodermis may well be important to rapidly release carboxylates, but likely lowers root structural defences against pathogens, particularly oomycetes. Conversely, roots of mycorrhizal plants may not be as effective at acquiring P when P availability is very low, but they are better defended against pathogens, and this superior defence likely involves mycorrhizal fungi. Taken together, we are beginning to understand how an exceptionally large number of plant species and P-acquisition strategies coexist on the most severely P-impoverished soils.70.
Crystal structures of human thymidylate synthase (hTS) revealed that the protein exists in active and inactive conformations,
defined by the position of a loop containing the active site nucleophile. TS is highly homologous among diverse species; however,
the residue at position 163 (hTS) differs among species. Arginine at this position is predicted by structural modeling to
enable conformational switching. Arginine or lysine is reported at this position in all mammals in the GenBank and Ensembl
databases, with arginine reported in only primates. Sequence analysis of the TS gene of representative primates revealed that
arginine occurs at this relative position in all primates except a representative of prosimians. Mutant human proteins were
created with residues at position 163 that occur in TSs from prokaryotes and eukaryotes. Catalytic constants (k
cat) of mutant enzymes were 45–149% of hTS, with the lysine mutant (R163K) exhibiting the highest k
cat. The effect of lysine substitution on solution structure and on ligand binding was investigated. R163K exhibited higher intrinsic
fluorescence, a more negative molar ellipticity, and higher dissociation constants (K
d) for ligands that modulate protein conformation than hTS. Temperature effects on intrinsic fluorescence and catalytic activity
of hTS and R163K are consistent with proteins populating different conformational states. The data indicate that the enzyme
with arginine at the position corresponding to 163 (hTS) evolved after the divergence of prosimians and simians and that substitution
of lysine by arginine confers unique structural and functional properties to the enzyme expressed in simian primates. 相似文献