首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   631篇
  免费   41篇
  2023年   2篇
  2022年   4篇
  2021年   15篇
  2020年   6篇
  2019年   13篇
  2018年   19篇
  2017年   14篇
  2016年   29篇
  2015年   31篇
  2014年   45篇
  2013年   34篇
  2012年   71篇
  2011年   62篇
  2010年   34篇
  2009年   24篇
  2008年   54篇
  2007年   48篇
  2006年   43篇
  2005年   33篇
  2004年   43篇
  2003年   18篇
  2002年   13篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1988年   2篇
  1982年   2篇
排序方式: 共有672条查询结果,搜索用时 15 毫秒
41.
A wealth of molecular interaction data is available in the literature, ranging from large-scale datasets to a single interaction confirmed by several different techniques. These data are all too often reported either as free text or in tables of variable format, and are often missing key pieces of information essential for a full understanding of the experiment. Here we propose MIMIx, the minimum information required for reporting a molecular interaction experiment. Adherence to these reporting guidelines will result in publications of increased clarity and usefulness to the scientific community and will support the rapid, systematic capture of molecular interaction data in public databases, thereby improving access to valuable interaction data.  相似文献   
42.
The MiSink Plugin converts Cytoscape, an open-source bioinformatics platform for network visualization, to a graphical interface for the database of interacting proteins (DIP: http://dip.doe-mbi.ucla.edu). Seamless integration is possible by providing bi-directional communication between Cytoscape and any Web site supplying data in XML or tab-delimited format. Availability: MiSink is freely available for download at http://dip.doe-mbi.ucla.edu/Software.cgi.  相似文献   
43.
MOTIVATION: The number of protein families has been estimated to be as small as 1000. Recent study shows that the growth in discovery of novel structures that are deposited into PDB and the related rate of increase of SCOP categories are slowing down. This indicates that the protein structure space will be soon covered and thus we may be able to derive most of remaining structures by using the known folding patterns. Present tertiary structure prediction methods behave well when a homologous structure is predicted, but give poorer results when no homologous templates are available. At the same time, some proteins that share twilight-zone sequence identity can form similar folds. Therefore, determination of structural similarity without sequence similarity would be beneficial for prediction of tertiary structures. RESULTS: The proposed PFRES method for automated protein fold classification from low identity (<35%) sequences obtains 66.4% and 68.4% accuracy for two test sets, respectively. PFRES obtains 6.3-12.4% higher accuracy than the existing methods. The prediction accuracy of PFRES is shown to be statistically significantly better than the accuracy of competing methods. Our method adopts a carefully designed, ensemble-based classifier, and a novel, compact and custom-designed feature representation that includes nearly 90% less features than the representation of the most accurate competing method (36 versus 283). The proposed representation combines evolutionary information by using the PSI-BLAST profile-based composition vector and information extracted from the secondary structure predicted with PSI-PRED. AVAILABILITY: The method is freely available from the authors upon request.  相似文献   
44.
Homaeian L  Kurgan LA  Ruan J  Cios KJ  Chen K 《Proteins》2007,69(3):486-498
Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure.  相似文献   
45.
46.
47.
48.

Background

Traditionally, it is believed that the native structure of a protein corresponds to a global minimum of its free energy. However, with the growing number of known tertiary (3D) protein structures, researchers have discovered that some proteins can alter their structures in response to a change in their surroundings or with the help of other proteins or ligands. Such structural shifts play a crucial role with respect to the protein function. To this end, we propose a machine learning method for the prediction of the flexible/rigid regions of proteins (referred to as FlexRP); the method is based on a novel sequence representation and feature selection. Knowledge of the flexible/rigid regions may provide insights into the protein folding process and the 3D structure prediction.

Results

The flexible/rigid regions were defined based on a dataset, which includes protein sequences that have multiple experimental structures, and which was previously used to study the structural conservation of proteins. Sequences drawn from this dataset were represented based on feature sets that were proposed in prior research, such as PSI-BLAST profiles, composition vector and binary sequence encoding, and a newly proposed representation based on frequencies of k-spaced amino acid pairs. These representations were processed by feature selection to reduce the dimensionality. Several machine learning methods for the prediction of flexible/rigid regions and two recently proposed methods for the prediction of conformational changes and unstructured regions were compared with the proposed method. The FlexRP method, which applies Logistic Regression and collocation-based representation with 95 features, obtained 79.5% accuracy. The two runner-up methods, which apply the same sequence representation and Support Vector Machines (SVM) and Naïve Bayes classifiers, obtained 79.2% and 78.4% accuracy, respectively. The remaining considered methods are characterized by accuracies below 70%. Finally, the Naïve Bayes method is shown to provide the highest sensitivity for the prediction of flexible regions, while FlexRP and SVM give the highest sensitivity for rigid regions.

Conclusion

A new sequence representation that uses k-spaced amino acid pairs is shown to be the most efficient in the prediction of the flexible/rigid regions of protein sequences. The proposed FlexRP method provides the highest prediction accuracy of about 80%. The experimental tests show that the FlexRP and SVM methods achieved high overall accuracy and the highest sensitivity for rigid regions, while the best quality of the predictions for flexible regions is achieved by the Naïve Bayes method.  相似文献   
49.

Background  

PD-(D/E)XK nucleases constitute a large and highly diverse superfamily of enzymes that display little sequence similarity despite retaining a common core fold and a few critical active site residues. This makes identification of new PD-(D/E)XK nuclease families a challenging task as they usually escape detection with standard sequence-based methods. We developed a modified transitive meta profile search approach and to consider the structural diversity of PD-(D/E)XK nuclease fold more thoroughly we analyzed also lower than threshold Meta-BASIC hits to select potentially correct predictions placed among unreliable or incorrect ones.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号