首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   679篇
  免费   44篇
  2023年   2篇
  2022年   4篇
  2021年   14篇
  2020年   6篇
  2019年   14篇
  2018年   18篇
  2017年   16篇
  2016年   28篇
  2015年   30篇
  2014年   48篇
  2013年   35篇
  2012年   72篇
  2011年   63篇
  2010年   36篇
  2009年   29篇
  2008年   58篇
  2007年   51篇
  2006年   43篇
  2005年   35篇
  2004年   43篇
  2003年   18篇
  2002年   12篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1969年   2篇
  1966年   1篇
排序方式: 共有723条查询结果,搜索用时 31 毫秒
61.
Chuvash polycythemia is a rare congenital form of polycythemia caused by homozygous R200W and H191D mutations in the VHL (von Hippel-Lindau) gene, whose gene product is the principal negative regulator of hypoxia-inducible factor. However, the molecular mechanisms underlying some of the hallmark abnormalities of Chuvash polycythemia, such as hypersensitivity to erythropoietin, are unclear. Here we show that VHL directly binds suppressor of cytokine signaling 1 (SOCS1) to form a heterodimeric E3 ligase that targets phosphorylated JAK2 (pJAK2) for ubiquitin-mediated destruction. In contrast, Chuvash polycythemia-associated VHL mutants have altered affinity for SOCS1 and do not engage with and degrade pJAK2. Systemic administration of a highly selective JAK2 inhibitor, TG101209, reversed the disease phenotype in Vhl(R200W/R200W) knock-in mice, an experimental model that recapitulates human Chuvash polycythemia. These results show that VHL is a SOCS1-cooperative negative regulator of JAK2 and provide biochemical and preclinical support for JAK2-targeted therapy in individuals with Chuvash polycythemia.  相似文献   
62.
The de novo design of protein-protein interfaces is a stringent test of our understanding of the principles underlying protein-protein interactions and would enable unique approaches to biological and medical challenges. Here we describe a motif-based method to computationally design protein-protein complexes with native-like interface composition and interaction density. Using this method we designed a pair of proteins, Prb and Pdar, that heterodimerize with a Kd of 130 nM, 1000-fold tighter than any previously designed de novo protein-protein complex. Directed evolution identified two point mutations that improve affinity to 180 pM. Crystal structures of an affinity-matured complex reveal binding is entirely through the designed interface residues. Surprisingly, in the in vitro evolved complex one of the partners is rotated 180° relative to the original design model, yet still maintains the central computationally designed hotspot interaction and preserves the character of many peripheral interactions. This work demonstrates that high-affinity protein interfaces can be created by designing complementary interaction surfaces on two noninteracting partners and underscores remaining challenges.  相似文献   
63.
64.
65.
The third complementarity-determining regions (CDR3s) of antibodies and T cell receptors (TCRs) have been shown to play a major role in antigen binding and specificity. Consistent with this notion, we demonstrated previously that high-affinity, peptide-specific TCRs could be generated in vitro by mutations in the CDR3alpha region of the 2C TCR. In contrast, it has been argued that CDR1 and CDR2 are involved to a greater extent than CDR3s in the process of MHC restriction, due to their engagement of MHC helices. Based on this premise, we initiated the present study to explore whether higher affinity TCRs generated through mutations in these CDRs or other regions would lead to significant reductions in peptide specificity (i.e. the result of greater binding energy gained through interactions with major histocompatibility complex (MHC) helices). Yeast-display technology and flow sorting were used to select high-affinity TCRs from libraries of CDR mutants or random mutants. High-affinity TCRs with mutations in the first residue of the Valpha, CDR1, CDR2, or CDR3 were isolated. Unexpectedly, every TCR mutant, including those in CDR1 and CDR2, retained remarkable peptide specificity. Molecular modeling of various mutants suggested that such exquisite specificity may be due to: (1) enhanced electrostatic interactions with key peptide or MHC residues; or (2) stabilization of CDRs in specific conformations. The results indicate that the TCR is positioned so that virtually every CDR can contribute to the antigen-specificity of a T cell. The conserved diagonal docking of TCRs could thus orient each CDR loop to sense the peptide directly or indirectly through peptide-induced effects on the MHC.  相似文献   
66.
Caspases. Regulating death since the origin of life   总被引:7,自引:0,他引:7       下载免费PDF全文
  相似文献   
67.
Insulin-like growth factor - IGF-I is a small, 70 aminoacid mitogenic peptide, contributing to processes of growing, cancerogenesis, apoptosis, wound healing and many others. It constitutes so called 'somatotropic axis GH-IGF', composed of many other components. This axis is responsible for regulation of metabolic processes, and its proper functioning conditions organism's homeostasis. Presented work describes concise review of publications concerning IGF-I structure, function, expression and proteins affecting its activity, synthesis and circulation.  相似文献   
68.
In the yeast Saccharomyces cerevisiae, septins form a scaffold in the shape of a ring at the future budding site that rearranges into a collar at the mother-bud neck. Many proteins bind asymmetrically to the septin collar. We found that the protein Bni4-CFP was located on the exterior of the septin ring before budding and on the mother side of the collar after budding, whereas the protein kinase Kcc4-YFP was located on the interior of the septin ring before budding and moved into the bud during the formation of the septin collar. Unbudded cells treated with the actin inhibitor latrunculin-A assembled cortical caps of septins on which Bni4-CFP and Kcc4-YFP colocalized. Bni4-CFP and Kcc4-YFP also colocalized on cortical caps of septins found in strains deleted for the genes encoding the GTPase activating proteins of Cdc42 (RGA1, RGA2, and BEM3). However, Bni4-CFP and Kcc4-YFP were still partially separated in mutants (gin4, elm1, cla4, and cdc3-1) in which septin morphology was severely disrupted in other ways. These observations provide clues to the mechanisms for the asymmetric localization of septin-associated proteins.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号