全文获取类型
收费全文 | 637篇 |
免费 | 42篇 |
专业分类
679篇 |
出版年
2023年 | 3篇 |
2022年 | 5篇 |
2021年 | 15篇 |
2020年 | 6篇 |
2019年 | 13篇 |
2018年 | 18篇 |
2017年 | 15篇 |
2016年 | 29篇 |
2015年 | 32篇 |
2014年 | 46篇 |
2013年 | 34篇 |
2012年 | 74篇 |
2011年 | 64篇 |
2010年 | 35篇 |
2009年 | 23篇 |
2008年 | 55篇 |
2007年 | 50篇 |
2006年 | 44篇 |
2005年 | 34篇 |
2004年 | 43篇 |
2003年 | 18篇 |
2002年 | 11篇 |
2001年 | 2篇 |
1998年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 2篇 |
1982年 | 2篇 |
排序方式: 共有679条查询结果,搜索用时 0 毫秒
661.
Page R Nelson MS von Delft F Elsliger MA Canaves JM Brinen LS Dai X Deacon AM Floyd R Godzik A Grittini C Grzechnik SK Jaroszewski L Klock HE Koesema E Kovarik JS Kreusch A Kuhn P Lesley SA McMullan D McPhillips TM Miller MD Morse A Moy K Ouyang J Robb A Rodrigues K Schwarzenbacher R Spraggon G Stevens RC van den Bedem H Velasquez J Vincent J Wang X West B Wolf G Hodgson KO Wooley J Wilson IA 《Proteins》2004,54(1):157-161
662.
663.
664.
Accurate identification of immunogenic regions in a given antigen chain is a difficult and actively pursued problem. Although accurate predictors for T-cell epitopes are already in place, the prediction of the B-cell epitopes requires further research. We overview the available approaches for the prediction of B-cell epitopes and propose a novel and accurate sequence-based solution. Our BEST (B-cell Epitope prediction using Support vector machine Tool) method predicts epitopes from antigen sequences, in contrast to some method that predict only from short sequence fragments, using a new architecture based on averaging selected scores generated from sliding 20-mers by a Support Vector Machine (SVM). The SVM predictor utilizes a comprehensive and custom designed set of inputs generated by combining information derived from the chain, sequence conservation, similarity to known (training) epitopes, and predicted secondary structure and relative solvent accessibility. Empirical evaluation on benchmark datasets demonstrates that BEST outperforms several modern sequence-based B-cell epitope predictors including ABCPred, method by Chen et al. (2007), BCPred, COBEpro, BayesB, and CBTOPE, when considering the predictions from antigen chains and from the chain fragments. Our method obtains a cross-validated area under the receiver operating characteristic curve (AUC) for the fragment-based prediction at 0.81 and 0.85, depending on the dataset. The AUCs of BEST on the benchmark sets of full antigen chains equal 0.57 and 0.6, which is significantly and slightly better than the next best method we tested. We also present case studies to contrast the propensity profiles generated by BEST and several other methods. 相似文献
665.
Immune-mediated bone marrow failure syndromes of progenitor and stem cells: molecular analysis of cytotoxic T cell clones 总被引:2,自引:0,他引:2
Maciejewski JP O'Keefe C Gondek L Tiu R 《Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society》2007,45(1):5-14
The unique structure of the T cell receptor (TCR) enables molecular identification of individual T cell clones and provides an unique opportunity for the design of molecular diagnostic tests based on the structure of the rearranged TCR chain e.g., using the TCR CDR3 region. Initially, clonal T cell malignancies, including T cell large granular lymphocyte leukemia (T-LGL), mucosis fungoides and peripheral T cell lymphoma were targets for the TCR-based analytic assays such as detection of clonality by T-gamma rearrangement using y-chain-specific PCR or Southern Blotting. Study of these disorders facilitated further analytic concepts and application of rational methods of TCR analysis to investigations of polyclonal T cell-mediated diseases. In hematology, such conditions include graft versus host disease (GvHD) and immune-mediated bone marrow failure syndromes. In aplastic anemia (AA), myelodysplastic syndrome (MDS) or paroxysmal nocturnal hemoglobinuria (PNH), cytotoxic T cell responses may be directed against certain antigens located on stem or more lineage-restricted progenitor cells in single lineage cytopenias. The nature of the antigenic targets driving polyclonal CTL responses remains unclear. Novel methods of TCR repertoire analysis, include VB flow cytometry, peptide-specific tetramer staining, in vitro stimulation assays and TCR CDR3-specific PCR. Such PCR assay can be either VB family-specific or multiplexed for all VB families. Amplified products can be characterized and quantitated to facilitate detection of the most immunodominant clonotypes. Such clonotypes may serve as markers for the global polyclonal T cell response. Identification of these clonotypes can be performed in blood and tissue biopsy material by various methods. Once immunodominant clonotypes corresponding to pathogenic CTL clones are identified they can serve as surrogate markers for the activity of the pathophysiologic process or even indicate the presence of specific antigens. The relevance of the individual clonotypes can be ascertained from clinical correlations with the activity of the disease. Quantitative clonotypic assays such as sequencing of multiple CDR3 clones or clonotypic Taqman PCR can be applied for the monitoring of the immunosuppressive therapy and prediction of relapse. Future technologies may allow for the design of clonotypic microarrays or other more clinically applicable methods of clonotypic diagnostics. Similarly, identification of immunodominant clonotypes may facilitate targeting of autoimmune or malignant clones with vaccination and induction of anti-idiotypic responses. 相似文献
666.
Dominique Tremblay Charles M. Cuerrier Lukasz Andrzejewski Edward R. O'Brien Andrew E. Pelling 《Journal of visualized experiments : JoVE》2014,(88)
Tools that allow the application of mechanical forces to cells and tissues or that can quantify the mechanical properties of biological tissues have contributed dramatically to the understanding of basic mechanobiology. These techniques have been extensively used to demonstrate how the onset and progression of various diseases are heavily influenced by mechanical cues. This article presents a multi-functional biaxial stretching (BAXS) platform that can either mechanically stimulate single cells or quantify the mechanical stiffness of tissues. The BAXS platform consists of four voice coil motors that can be controlled independently. Single cells can be cultured on a flexible substrate that can be attached to the motors allowing one to expose the cells to complex, dynamic, and spatially varying strain fields. Conversely, by incorporating a force load cell, one can also quantify the mechanical properties of primary tissues as they are exposed to deformation cycles. In both cases, a proper set of clamps must be designed and mounted to the BAXS platform motors in order to firmly hold the flexible substrate or the tissue of interest. The BAXS platform can be mounted on an inverted microscope to perform simultaneous transmitted light and/or fluorescence imaging to examine the structural or biochemical response of the sample during stretching experiments. This article provides experimental details of the design and usage of the BAXS platform and presents results for single cell and whole tissue studies. The BAXS platform was used to measure the deformation of nuclei in single mouse myoblast cells in response to substrate strain and to measure the stiffness of isolated mouse aortas. The BAXS platform is a versatile tool that can be combined with various optical microscopies in order to provide novel mechanobiological insights at the sub-cellular, cellular and whole tissue levels. 相似文献
667.
Jerzy Mrowicki Karolina Przybylowska-Sygut Lukasz Dziki Andrzej Sygut Jan Chojnacki Adam Dziki Ireneusz Majsterek 《Molecular biology reports》2014,41(7):4639-4652
Inflammatory bowel disease (IBD) are characterized recurrent inflammation of gastrointestinal tract. The etiology and pathogenesis this disease is currently unclear, but it has become evident that immune and genetic factors are involved in this process. The aim of this study was to determine whether gene polymorphisms: MIF-173 G/C; CXCL12-801 G/A and CXCR4 C/T exon 2 position of rs2228014 is associated with susceptibility to IBD. A total of 286 patients were examined with IBD, including 152 patients with ulcerative colitis and 134 with Crohn’s disease (CD) and 220 healthy subjects were recruited from the Polish population. Genotyping for polymorphisms in CXCL12/CXCR4 and MIF was performed by RFLP-PCR. Statistical significance was found for polymorphisms CXCR4, a receptor gene for CXCL12 genotypes and alleles in CD and for genotype C/T and T allele in ulcerative colitis with respect to control. This confirms the effect of CXCL12 gene. The interplay between CXCL12 and its receptor CXCR4 affects homeostasis and inflammation in the intestinal mucosa. Three-gene analysis in CD confirmed the association of genotype GGGGCT. Statistical analysis of clinical data of patients with ulcerative colitis showed significant differences in the distribution of genotype C/T and T allele for CXCR4 in the left-side colitis. Having CXCR4/CXCL12 chemokine axis polymorphisms may predispose to the development of IBD. Activation can also be their defensive reaction to the long-lasting inflammation. 相似文献
668.
669.
Pawel Borun Lukasz Kubaszewski Tomasz Banasiewicz Jaroslaw Walkowiak Marzena Skrzypczak-Zielinska Marta Kaczmarek-Rys Andrzej Plawski 《Human genetics》2014,133(5):535-545
Efficient and cost-effective screening for DNA sequence changes, both small mutations and copy number variations (CNVs), is a crucial aspect for routine genetic diagnostics as well as for basic research. In this study we present a development and evaluation of comparative-high resolution melting (C-HRM), a new approach for the simultaneous screening of small DNA changes and gene CNVs. In contrast to other methods, relative quantification in C-HRM is based on the results obtained during the melting process and calculations of the melting peak height ratio in the multiplex reaction. Validation of the method was conducted on DNA samples from 50 individuals from Duchenne muscular dystrophy (DMD) families, 50 probands diagnosed with familial adenomatous polyposis and a control group of 36 women and 36 men. The results of analyses conducted on fragments of the DMD and APC genes correspond completely (100 %) with the results of previous studies. C-HRM sensitivity in CNV detection was assessed through the analysis of mixed DNA samples with different proportions of a deletion carrier and wild type control. The results are presented as a linear regression with R 2 of 0.9974 and imply the capability of the method to detect mosaics. C-HRM is an attractive and powerful alternative to other methods of point mutations and CNV detection with 100 % accuracy in our studied group. 相似文献
670.
Marta Pokrywczynska Arkadiusz Jundzill Jan Adamowicz Tomasz Kowalczyk Karolina Warda Marta Rasmus Lukasz Buchholz Sandra Krzyzanowska Pawel Nakielski Tomasz Chmielewski Magdalena Bodnar Andrzej Marszalek Robert Debski Malgorzata Frontczak-Baniewicz Grzegorz Miku?owski Maciej Nowacki Tomasz A. Kowalewski Tomasz Drewa 《PloS one》2014,9(8)
The purpose of this study was to compare: a new five-layered poly (L–lactide–co–caprolactone) (PLC) membrane and small intestinal submucosa (SIS) as a control in rat urinary bladder wall regeneration. The five-layered poly (L–lactide–co–caprolactone) membrane was prepared by an electrospinning process. Adipose tissue was harvested from five 8-week old male Wistar rats. Adipose derived stem cells (ADSCs) were seeded in a density of 3×106 cells/cm2 onto PLC membrane and SIS scaffolds, and cultured for 5-7 days in the stem cell culture medium. Twenty male Wistar rats were randomly divided into five equal groups. Augmentation cystoplasty was performed in a previously created dome defect. Groups: (I) PLC+ 3×106ADSCs; (II) SIS+ 3×106ADSCs; (III) PLC; (IV) SIS; (V) control. Cystography was performed after three months. The reconstructed urinary bladders were evaluated in H&E and Masson''s trichrome staining. Regeneration of all components of the normal urinary bladder wall was observed in bladders augmented with cell-seeded SIS matrices. The urinary bladders augmented with SIS matrices without cells showed fibrosis and graft contraction. Bladder augmentation with the PLC membrane led to numerous undesirable events including: bladder wall perforation, fistula or diverticula formation, and incorporation of the reconstructed wall into the bladder lumen. The new five-layered poly (L–lactide–co–caprolactone) membrane possesses poorer potential for regenerating the urinary bladder wall compared with SIS scaffold. 相似文献