首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   636篇
  免费   42篇
  2023年   3篇
  2022年   4篇
  2021年   15篇
  2020年   6篇
  2019年   13篇
  2018年   18篇
  2017年   15篇
  2016年   29篇
  2015年   32篇
  2014年   46篇
  2013年   34篇
  2012年   74篇
  2011年   64篇
  2010年   35篇
  2009年   23篇
  2008年   55篇
  2007年   50篇
  2006年   44篇
  2005年   34篇
  2004年   43篇
  2003年   18篇
  2002年   11篇
  2001年   2篇
  1998年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1982年   2篇
排序方式: 共有678条查询结果,搜索用时 15 毫秒
631.
632.
Temperatures of leaves or canopies can be used as indicators of stomatal closure in response to soil water deficit. In 2 years of field experiments with grapevines (Vitis vinifera L., cvs Castel?o and Aragonês), it was found that thermal imaging can distinguish between irrigated and non-irrigated canopies, and even between deficit irrigation treatments. Average canopy temperature was inversely correlated with stomatal conductance measured with a porometer. Variation of the distribution of temperatures within canopies was not found to be a reliable indicator of stress. A large degree of variation between images was found in reference 'wet' and 'dry' leaves used in the first year for the calculation of an index proportional to stomatal conductance. In the second year, fully irrigated (FI) (100% Et(c)) and non-irrigated (NI) canopies were used as alternatives to wet and dry leaves. A crop water stress index utilizing these FI and NI 'references', where stressed canopies have the highest values and non-stressed canopies have the lowest values, was found to be a suitable measure for detecting stress. It is suggested that the average temperatures of areas of canopies containing several leaves may be more useful for distinguishing between irrigation treatments than the temperatures of individual leaves. Average temperatures over several leaves per canopy may be expected to reduce the impact of variation in leaf angles. The results are discussed in relation to the application of thermal imaging to irrigation scheduling and monitoring crop performance.  相似文献   
633.
Human C8 is one of five components of the cytolytic membrane attack complex of complement. It contains three subunits (C8alpha, C8beta, C8gamma) arranged as a disulfide-linked C8alpha-gamma heterodimer that is noncovalently associated with C8beta. C8gamma has the distinction of being the only lipocalin in the complement system. Lipocalins have a core beta-barrel structure forming a calyx with a binding site for a small hydrophobic ligand. A natural ligand for C8gamma has not been identified; however previous structural studies indicate C8gamma has a typical lipocalin fold that is suggestive of a ligand-binding capability. A distinctive feature of C8gamma is the division of its putative ligand binding pocket into a hydrophilic upper portion and a large hydrophobic lower cavity. Access to the latter is restricted by the close proximity of two tyrosine side chains (Y83 and Y131). In the present study, binding experiments were performed using lauric acid as a pseudoligand to investigate the potential accessibility of the lower cavity. The crystal structure of a C8gamma.laurate complex revealed that Y83 and Y131 can move to allow penetration of the hydrocarbon chain of laurate into the lower cavity. Introducing a Y83W mutation blocked access but had no effect on the ability of C8gamma to enhance C8 cytolytic activity. Together, these results indicate that the lower cavity in C8gamma could accommodate a ligand if such a ligand has a narrow hydrophobic moiety at one end. Entry of that moiety into the lower cavity would require movement of Y83 and Y131, which act as a gate at the cavity entrance.  相似文献   
634.
635.
The unique structure of the T cell receptor (TCR) enables molecular identification of individual T cell clones and provides an unique opportunity for the design of molecular diagnostic tests based on the structure of the rearranged TCR chain e.g., using the TCR CDR3 region. Initially, clonal T cell malignancies, including T cell large granular lymphocyte leukemia (T-LGL), mucosis fungoides and peripheral T cell lymphoma were targets for the TCR-based analytic assays such as detection of clonality by T-gamma rearrangement using y-chain-specific PCR or Southern Blotting. Study of these disorders facilitated further analytic concepts and application of rational methods of TCR analysis to investigations of polyclonal T cell-mediated diseases. In hematology, such conditions include graft versus host disease (GvHD) and immune-mediated bone marrow failure syndromes. In aplastic anemia (AA), myelodysplastic syndrome (MDS) or paroxysmal nocturnal hemoglobinuria (PNH), cytotoxic T cell responses may be directed against certain antigens located on stem or more lineage-restricted progenitor cells in single lineage cytopenias. The nature of the antigenic targets driving polyclonal CTL responses remains unclear. Novel methods of TCR repertoire analysis, include VB flow cytometry, peptide-specific tetramer staining, in vitro stimulation assays and TCR CDR3-specific PCR. Such PCR assay can be either VB family-specific or multiplexed for all VB families. Amplified products can be characterized and quantitated to facilitate detection of the most immunodominant clonotypes. Such clonotypes may serve as markers for the global polyclonal T cell response. Identification of these clonotypes can be performed in blood and tissue biopsy material by various methods. Once immunodominant clonotypes corresponding to pathogenic CTL clones are identified they can serve as surrogate markers for the activity of the pathophysiologic process or even indicate the presence of specific antigens. The relevance of the individual clonotypes can be ascertained from clinical correlations with the activity of the disease. Quantitative clonotypic assays such as sequencing of multiple CDR3 clones or clonotypic Taqman PCR can be applied for the monitoring of the immunosuppressive therapy and prediction of relapse. Future technologies may allow for the design of clonotypic microarrays or other more clinically applicable methods of clonotypic diagnostics. Similarly, identification of immunodominant clonotypes may facilitate targeting of autoimmune or malignant clones with vaccination and induction of anti-idiotypic responses.  相似文献   
636.
Cystic fibrosis (CF) is genetically determined illness, which is caused by the mutation in the CFTR gene. CFTR protein is also expressed in epithelial cells of parotid glands, therefore parotid glands are also affected in CF patients. Cathepsin D is one of the proteolitic cascade enzymes. Physiological wearing out result in occurrence of trace quantities of this enzyme in serum and body fluids, including saliva. Among different enzymes, saliva contains cathepsin D (CTSD, EC 3.4.23.5). The aim of this study was to determine cathepsin D activity in mixed saliva in cystic fibrosis patients and healthy controls. The study was performed in a group of 26 CF patients (10F, 16M). The results obtained in CF group was compared with the results of thirty healthy subjects (12F, 14M). From each subject 8 ml of mixed saliva was obtained: before and after the stimulation of saliva excretion using paraffin pledgets. Protein and glycoprotein content was assessed using Winzler's method. Protein concentration in controls and CF group before stimulation of excretion was 1.15+/-0.714 mg/mL and 1.54+/-0.925 mg/mL. After stimulation protein concentration in saliva has lowered to 0.88+/-0.77 mg/mL in CF group and 1.24+/-1.213 mg/mL in controls. Glycoprotein concentration in controls and in CF group was respectively: before stimulation 1.08+/-0.271 mg/mL and 1.05+/-0.344 mg/mL; after stimulation 0.92+/-0.292 mg/mL and 0.86+/-0.283 mg/mL. The activity of CTSD in controls was 45.9+/-24.98 Tyr nmol/mL/4h before stimulation and 109.3+/-56.94 Tyr nmol/mL/4h after stimulation of excretion. In CF group CTSD activity before stimulation was 134.5+/-81.80 Tyr nmol/mL/4h and after stimulation 134.4+/-62.18 Tyr nmol/mL/4h. Comparing the CTSD activity in both groups statistically significant difference has been revealed in samples collected before stimulation of excretion (p=0.013). The activity of cathepsin D in saliva of cystic fibrosis patient is significantly higher than in healthy controls before the stimulation of excretion with paraffin pledgets.  相似文献   
637.
Inflammatory bowel disease (IBD) are characterized recurrent inflammation of gastrointestinal tract. The etiology and pathogenesis this disease is currently unclear, but it has become evident that immune and genetic factors are involved in this process. The aim of this study was to determine whether gene polymorphisms: MIF-173 G/C; CXCL12-801 G/A and CXCR4 C/T exon 2 position of rs2228014 is associated with susceptibility to IBD. A total of 286 patients were examined with IBD, including 152 patients with ulcerative colitis and 134 with Crohn’s disease (CD) and 220 healthy subjects were recruited from the Polish population. Genotyping for polymorphisms in CXCL12/CXCR4 and MIF was performed by RFLP-PCR. Statistical significance was found for polymorphisms CXCR4, a receptor gene for CXCL12 genotypes and alleles in CD and for genotype C/T and T allele in ulcerative colitis with respect to control. This confirms the effect of CXCL12 gene. The interplay between CXCL12 and its receptor CXCR4 affects homeostasis and inflammation in the intestinal mucosa. Three-gene analysis in CD confirmed the association of genotype GGGGCT. Statistical analysis of clinical data of patients with ulcerative colitis showed significant differences in the distribution of genotype C/T and T allele for CXCR4 in the left-side colitis. Having CXCR4/CXCL12 chemokine axis polymorphisms may predispose to the development of IBD. Activation can also be their defensive reaction to the long-lasting inflammation.  相似文献   
638.
639.
Efficient and cost-effective screening for DNA sequence changes, both small mutations and copy number variations (CNVs), is a crucial aspect for routine genetic diagnostics as well as for basic research. In this study we present a development and evaluation of comparative-high resolution melting (C-HRM), a new approach for the simultaneous screening of small DNA changes and gene CNVs. In contrast to other methods, relative quantification in C-HRM is based on the results obtained during the melting process and calculations of the melting peak height ratio in the multiplex reaction. Validation of the method was conducted on DNA samples from 50 individuals from Duchenne muscular dystrophy (DMD) families, 50 probands diagnosed with familial adenomatous polyposis and a control group of 36 women and 36 men. The results of analyses conducted on fragments of the DMD and APC genes correspond completely (100 %) with the results of previous studies. C-HRM sensitivity in CNV detection was assessed through the analysis of mixed DNA samples with different proportions of a deletion carrier and wild type control. The results are presented as a linear regression with R 2 of 0.9974 and imply the capability of the method to detect mosaics. C-HRM is an attractive and powerful alternative to other methods of point mutations and CNV detection with 100 % accuracy in our studied group.  相似文献   
640.
Pseudomonas aeruginosa is an opportunistic pathogen commonly found in humans and other organisms and is an important cause of infection especially in patients with compromised immune defense mechanisms. The PA3611 gene of P. aeruginosa PAO1 encodes a secreted protein of unknown function, which has been recently classified into a small Pseudomonas‐specific protein family called DUF4146. As part of our effort to extend structural coverage of novel protein space and provide a structure‐based functional insight into new protein families, we report the crystal structure of PA3611, the first structural representative of the DUF4146 protein family. Proteins 2014; 82:1086–1092. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号