首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1732篇
  免费   168篇
  2023年   21篇
  2022年   37篇
  2021年   66篇
  2020年   36篇
  2019年   47篇
  2018年   58篇
  2017年   43篇
  2016年   69篇
  2015年   116篇
  2014年   111篇
  2013年   121篇
  2012年   162篇
  2011年   118篇
  2010年   91篇
  2009年   72篇
  2008年   98篇
  2007年   92篇
  2006年   83篇
  2005年   66篇
  2004年   66篇
  2003年   59篇
  2002年   58篇
  2001年   20篇
  2000年   14篇
  1999年   19篇
  1998年   14篇
  1997年   4篇
  1996年   12篇
  1995年   5篇
  1994年   3篇
  1992年   7篇
  1991年   10篇
  1990年   5篇
  1989年   5篇
  1987年   6篇
  1986年   8篇
  1985年   10篇
  1984年   8篇
  1983年   4篇
  1981年   4篇
  1979年   8篇
  1978年   2篇
  1976年   3篇
  1975年   4篇
  1974年   5篇
  1973年   2篇
  1971年   5篇
  1967年   2篇
  1966年   3篇
  1965年   3篇
排序方式: 共有1900条查询结果,搜索用时 46 毫秒
141.
142.
Maintaining genomic integrity is critical to avoid life-threatening disorders, such as premature aging, neurodegeneration and cancer. A multiprotein cascade operates at sites of DNA double-strand breaks (DSBs) to recognize, signal and repair damage. RNF168 (ring-finger nuclear factor) contributes to this emerging pathway of several E3 ubiquitin ligases that perform sequential ubiquitylations on damaged chromosomes, chromatin modifications essential for aggregation of repair complexes at the DSB sites. Here, we report the clinical and cellular phenotypes associated with a newly identified homozygous nonsense mutation in the RNF168 gene of a patient with a syndrome mimicking ataxia-telangiectasia. The mutation eliminated both of RNF168's ubiquitin-binding motifs, thus blocking progression of the ubiquitylation cascade and retention of repair proteins including tumor suppressors 53BP1 and BRCA1 at DSB sites, consistent with the observed defective DNA damage checkpoints/repair and pronounced radiosensitivity. Rapid screening for RNF168 pathway deficiency was achieved by scoring patients' lymphoblastoid cells for irradiation-induced nuclear foci containing 53BP1, a robust assay we propose for future diagnostic applications. The formation of radiation-induced DSB repair foci was rescued by ectopic expression of wild-type RNF168 in patient's cells, further causally linking the RNF168 mutation with the pathology. Clinically, this novel syndrome featured ataxia, telangiectasia, elevated alphafetoprotein, immunodeficiency, microcephaly and pulmonary failure and has implications for the differential diagnosis of autosomal recessive ataxias.  相似文献   
143.
Ubiquitin/proteasome‐mediated degradation of eukaryotic proteins is critically implicated in a number of signalling pathways and cellular processes. To specifically impair proteasome activities, in vitro developing Drosophila melanogaster egg chambers were exposed to the MG132 or epoxomicin proteasome inhibitors, while a GAL4/UAS binary genetic system was employed to generate double transgenic flies overexpressing β2 and β6 conditional mutant proteasome subunits in a cell type‐specific manner. MG132 and epoxomicin administration resulted in severe deregulation of in vitro developing egg chambers, which was tightly associated with precocious induction of nurse cell‐specific apoptotic and autophagic death programmes, featured by actin cytoskeleton disorganization, nuclear chromatin condensation, DRICE caspase activation and autophagosome accumulation. In vivo targeted overexpression of β2 and β6 conditional mutants, specifically in the nurse cell compartment, led to a notable up‐regulation of sporadic apoptosis potency during early and mid‐oogenesis ‘checkpoints’, thus reasonably justifying the observed reduction in eclosion efficiency. Furthermore, in response to the intracellular abundance of β2 and β6 conditional mutant forms, specifically in numerous tissues of third instar larval stage, the developmental course was arrested, and lethal phenotypes were obtained at this particular embryonic period, with the double transgenic heterozygote embryos being unable to further proceed to complete maturation to adult flies. Our data demonstrate that physiological proteasome function is required to ensure normal oogenesis and embryogenesis in D. melanogaster, since targeted and cell type‐dependent proteasome inactivation initiates developmentally deregulated apoptotic and autophagic mechanisms.  相似文献   
144.
145.
146.
The cancer-testis (CT) family of antigens is expressed in a variety of malignant neoplasms. In most cases, no CT antigen is found in normal tissues, except in testis, making them ideal targets for cancer immunotherapy. A comprehensive analysis of CT antigen expression has not yet been reported in prostate cancer. MAGE-C2/CT-10 is a novel CT antigen. The objective of this study was to analyze extent and prognostic significance of MAGE-C2/CT10 protein expression in prostate cancer. 348 prostate carcinomas from consecutive radical prostatectomies, 29 castration-refractory prostate cancer, 46 metastases, and 45 benign hyperplasias were immunohistochemically analyzed for MAGE-C2/CT10 expression using tissue microarrays. Nuclear MAGE-C2/CT10 expression was identified in only 3.3% primary prostate carcinomas. MAGE-C2/CT10 protein expression was significantly more frequent in metastatic (16.3% positivity) and castration-resistant prostate cancer (17% positivity; p<0.001). Nuclear MAGE-C2/CT10 expression was identified as predictor of biochemical recurrence after radical prostatectomy (p = 0.015), which was independent of preoperative PSA, Gleason score, tumor stage, and surgical margin status in multivariate analysis (p<0.05). MAGE-C2/CT10 expression in prostate cancer correlates with the degree of malignancy and indicates a higher risk for biochemical recurrence after radical prostatectomy. Further, the results suggest MAGE-C2/CT10 as a potential target for adjuvant and palliative immunotherapy in patients with prostate cancer.  相似文献   
147.
New screening techniques for improved enzyme variants in turbid media are urgently required in many industries such as the detergent and food industry. Here, a new method is presented to measure enzyme activity in different types of substrate suspensions. This method allows a semiquantitative determination of protease activity using native protein substrates. Unlike conventional techniques for measurement of enzyme activity, the BioLector technology enables online monitoring of scattered light intensity and fluorescence signals during the continuous shaking of samples in microtiter plates. The BioLector technique is hereby used to monitor the hydrolysis of an insoluble protein substrate by measuring the decrease of scattered light. The kinetic parameters for the enzyme reaction (V(max,app) and K(m,app)) are determined from the scattered light curves. Moreover, the influence of pH on the protease activity is investigated. The optimal pH value for protease activity was determined to be between pH 8 to 11 and the activities of five subtilisin serine proteases with variations in the amino acid sequence were compared. The presented method enables proteases from genetically modified strains to be easily characterized and compared. Moreover, this method can be applied to other enzyme systems that catalyze various reactions such as cellulose decomposition.  相似文献   
148.
Fungi possess the biochemical and ecological capacity to degrade environmental organic chemicals and to decrease the risk associated with metals, metalloids and radionuclides, either by chemical modification or by influencing chemical bioavailability. Furthermore, the ability of these fungi to form extended mycelial networks, the low specificity of their catabolic enzymes and their independence from using pollutants as a growth substrate make these fungi well suited for bioremediation processes. However, despite dominating the living biomass in soil and being abundant in aqueous systems, fungi have not been exploited for the bioremediation of such environments. In this Review, we describe the metabolic and ecological features that make fungi suited for use in bioremediation and waste treatment processes, and discuss their potential for applications on the basis of these strengths.  相似文献   
149.
The high cost of commercial lipases limits their industrial application in the production of biodiesel or fatty acid methyl esters (FAME). This disadvantage has encouraged the search for lipase-producing microorganisms (LPMs) as potential whole cell catalysts for FAME production. The aim of this study, therefore, was to evaluate innovative procedures for easy selection and testing of LPMs as a low-cost whole cell catalyst, based on catalytic performance, methanol tolerance and physico-chemical cell surface properties. The latter (in particular the cell surface hydrophobicity and charge) were analyzed because of their crucial role in microbial adhesion to surfaces and the concomitant increase in cell immobilization and bioavailability of hydrophobic substrates. Biocatalysis experiments performed in the presence of nutrient, rapeseed oil and methanol were an effective tool for studying and identifying, in just two experiments, the capacity of different LPMs as biocatalysts in organic media, as well as the methanol tolerance of the cell and the lipase. This indicates the potential for using live microorganisms for FAME production. Another finding was that the inhibitory effect of methanol is more significant for lipase activity than LPM growth, indicating that the way in which alcohol is supplied to the reaction is a crucial step in FAME production by biocatalysts. According to these results, the application of these innovative assessments should simplify the search for new strains which are able to effectively catalyze the FAME production process.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号