首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1672篇
  免费   162篇
  1834篇
  2024年   2篇
  2023年   21篇
  2022年   37篇
  2021年   64篇
  2020年   36篇
  2019年   46篇
  2018年   57篇
  2017年   43篇
  2016年   67篇
  2015年   115篇
  2014年   111篇
  2013年   115篇
  2012年   158篇
  2011年   114篇
  2010年   88篇
  2009年   68篇
  2008年   95篇
  2007年   91篇
  2006年   82篇
  2005年   66篇
  2004年   63篇
  2003年   59篇
  2002年   57篇
  2001年   20篇
  2000年   13篇
  1999年   19篇
  1998年   14篇
  1997年   4篇
  1996年   12篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   6篇
  1991年   10篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   8篇
  1985年   8篇
  1984年   8篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   7篇
  1976年   2篇
  1974年   3篇
  1971年   2篇
  1963年   1篇
排序方式: 共有1834条查询结果,搜索用时 15 毫秒
991.
992.
The cestode Schistocephalus solidus is a facultatively self-fertilising simultaneous hermaphrodite. Here we test for differences in the starting point, the rate, and the magnitude of egg production between individuals allowed to reproduce alone (only self-fertilisation possible) or in pairs (both self- and cross-fertilisation possible). Specifically, we want to distinguish between alternative processes responsible for the lower egg production in paired individuals observed in an earlier study (Wedekind et al., 1998). We designed an improved in vitro system, replacing the bird final host that allows us to measure, with high temporal resolution, the timing and magnitude of lifetime egg production of worms in these two social situations. We found that the experimental groups did not differ significantly in the starting point of egg production. However, the temporal pattern in egg production differed between them, in that paired individuals had a lower rate of egg production. This, however, did not lead to a significant reduction in lifetime egg production, as pairs compensated for the lower rate by producing eggs longer than single individuals. We argue that the lower rate of egg production may nevertheless lead to a time cost of pairing in the study species, and that this cost is likely to represent a cost of outcrossing due to sexual selection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
993.
To examine the role of changes in myocardial metabolism in cardiac dysfunction in diabetes mellitus, rats were injected with streptozotocin (65 mg/kg body wt) to induce diabetes and were treated 2 wk later with the carnitine palmitoyltransferase inhibitor (carnitine palmitoyltransferase I) etomoxir (8 mg/kg body wt) for 4 wk. Untreated diabetic rats exhibited a reduction in heart rate, left ventricular systolic pressure, and positive and negative rate of pressure development and an increase in end-diastolic pressure. The sarcolemmal Na+-K+-ATPase activity was depressed and was associated with a decrease in maximal density of binding sites (Bmax) value for high-affinity sites for [3H]ouabain, whereas Bmax for low-affinity sites was unaffected. Treatment of diabetic animals with etomoxir partially reversed the depressed cardiac function with the exception of heart rate. The high serum triglyceride and free fatty acid levels were reduced, whereas the levels of glucose, insulin, and 3,3',-5-triiodo-L-thyronine were not affected by etomoxir in diabetic animals. The activity of Na+-K+-ATPase expressed per gram heart weight, but not per milligram sarcolemmal protein, was increased by etomoxir in diabetic animals. Furthermore, Bmax (per g heart wt) for both low-affinity and high-affinity binding sites in control and diabetic animals was increased by etomoxir treatment. Etomoxir treatment also increased the depressed left ventricular weight of diabetic rats and appeared to increase the density of the sarcolemma and transverse tubular system to normalize Na+-K+-ATPase activity. Therefore, a shift in myocardial substrate utilization may represent an important signal for improving the depressed cardiac function and Na+-K+-ATPase activity in diabetic rat hearts with impaired glucose utilization.  相似文献   
994.
The symbiosis of plants with arbuscular mycorrhizal fungi (AMF) may become parasitic if the cost:benefit ratio (carbon:phosphorus ratio) increases. In case of mycorrhizal parasitism, a plant may prevent growth depression through the reduction of root colonization as a form of control over the symbiosis. In this greenhouse study, we attempted to manipulate the cost:benefit ratio of the arbuscular mycorrhizal symbiosis by shading and/or phosphorus (P) fertilization in the differentially mycotrophic plant species Hieracium pilosella and Corynephorus canescens. By repeated sampling of soil cores, we assessed the temporal progress of plant investment towards mycorrhizal structures as a measure of plant control over the AMF. Unexpectedly, we found no obvious treatment effects on mycorrhizal growth dependency (MGD), most likely caused by constant N-limitation in AM plants being enhanced by P-fertilization and shade probably not exacerbating plant C-budget for AMF. This highlights the importance of N:P:C stoichiometry for the outcome of the symbiosis. Nevertheless, we found possible control mechanisms in shaded H. pilosella, with considerably higher resource investments into root than into hyphal growth, while root colonization was only marginally suppressed. This control only manifested after 4 weeks of growth under potentially detrimental conditions, emphasizing the importance of time in plant control over the arbuscular mycorrhizal symbiosis. In contrast, the less mycotrophic C. canescens did not exhibit obvious changes in mycorrhizal investments in reaction to shading and P-fertilization, possibly because the low mycotrophy and AMF colonization already imposes a functioning control mechanism in this species. Our study suggests that highly mycotrophic plants may have a stronger need to keep AMF in check than less mycotrophic plants, which may have implications for the role of mycotrophy in the outcome of symbiotic interactions in natural situations.  相似文献   
995.
Murray DH  Tamm LK 《Biochemistry》2011,50(42):9014-9022
The neuronal acceptor SNARE complex that functions as the receptor for synaptic vesicle docking and fusion at the presynaptic membrane is composed of the single-span transmembrane protein syntaxin-1A and the palmitoylated soluble protein SNAP-25. Previously, we explored interactions that promote the formation of syntaxin-1A clusters in membranes. Cholesterol activates clustering in native and model membranes, and its depletion in neuroendocrine cells results in a homogeneous distribution of the protein. However, as little as 1 mol % phosphatidylinositol 4,5-bisphosphate (PI-4,5-P(2)) or 20 mol % phosphatidylserine was found to disperse syntaxin-1A clusters [Murray, D. H., and Tamm, L. K. (2009) Biochemistry 48, 4617-4625]. Strong evidence suggests that syntaxin-1A and its synaptic vesicle cognate synaptobrevin both interact directly with PI-4,5-P(2) and that this interaction activates fusion. However, the molecular details of this interaction and its relationship to the partial dispersion of syntaxin-1A clusters remain largely unexplored. Hence, we mutated the polybasic juxtamembrane motif of syntaxin-1A and found several residues that partially or fully abrogate the electrostatic interaction with PI-4,5-P(2). We further show that even in the presence of physiological concentrations of phosphatidylserine, the PI-4,5-P(2)-syntaxin interaction is sufficiently strong to disrupt syntaxin-1A clustering. The stereochemistry of PI-4,5-P(2) is not critical for this interaction as other polyphosphoinositides have similar effects. Forming an acceptor SNARE complex between syntaxin-1A and SNAP-25 weakens but does not abrogate cholesterol/PI-4,5-P(2)-controlled cluster formation. Potential consequences of these interactions with respect to synaptic vesicle fusion are discussed.  相似文献   
996.
Topoisomerase IIβ-binding protein 1 (TOPBP1) participates in DNA replication and DNA damage response; however, its role in DNA repair and relevance for human cancer remain unclear. Here, through an unbiased small interfering RNA screen, we identified and validated TOPBP1 as a novel determinant whose loss sensitized human cells to olaparib, an inhibitor of poly(ADP-ribose) polymerase. We show that TOPBP1 acts in homologous recombination (HR) repair, impacts olaparib response, and exhibits aberrant patterns in subsets of human ovarian carcinomas. TOPBP1 depletion abrogated RAD51 loading to chromatin and formation of RAD51 foci, but without affecting the upstream HR steps of DNA end resection and RPA loading. Furthermore, TOPBP1 BRCT domains 7/8 are essential for RAD51 foci formation. Mechanistically, TOPBP1 physically binds PLK1 and promotes PLK1 kinase–mediated phosphorylation of RAD51 at serine 14, a modification required for RAD51 recruitment to chromatin. Overall, our results provide mechanistic insights into TOPBP1’s role in HR, with potential clinical implications for cancer treatment.  相似文献   
997.
Long non‐coding RNAs (lncRNAs) have emerged as regulators of various biological processes, but to which extent lncRNAs play a role in genome integrity maintenance is not well understood. In this issue of EMBO Reports, Sharma et al 1 identify the DNA damage‐induced lncRNA DDSR1 as an integral player of the DNA damage response (DDR). DDSR1 has both an early role by modulating repair pathway choices, and a later function when it regulates gene expression. Sharma et al 1 thus uncover a dual role for a hitherto uncharacterized lncRNA during the cellular response to DNA damage.  相似文献   
998.
The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel widely expressed in vertebrates and is associated with numerous physiological functions. As transmembrane ion channels, α7-nAChRs need to be expressed on the surface of the plasma membrane to function. The receptor has been reported to associate with proteins involved with receptor biogenesis, modulation of receptor properties, as well as intracellular signaling cascades and some of these associated proteins may affect surface expression of α7-nAChRs. The putative chaperone resistance to inhibitors of cholinesterase 3 (Ric-3) has been reported to interact with, and enhance the surface expression of, α7-nAChRs. In this study, we identified proteins that associate with α7-nAChRs when Ric-3 is expressed. Using α-bungarotoxin (α-bgtx), we isolated and compared α7-nAChR-associated proteins from two stably transfected, human tumor-derived cell lines: SH-EP1-hα7 expressing human α7-nAChRs and the same cell line further transfected to express Ric-3, SH-EP1-hα7-Ric-3. Mass spectrometric analysis of peptides identified thirty-nine proteins that are associated with α7-nAChRs only when Ric-3 was expressed. Significantly, and consistent with reports of Ric-3 function in the literature, several of the identified proteins are involved in biological processes that may affect nAChR surface expression such as post-translational processing of proteins, protein trafficking, and protein transport. Additionally, proteins affecting the cell cycle, the cytoskeleton, stress responses, as well as cyclic AMP- and inositol triphosphate-dependent signaling cascades were identified. These results illuminate how α-bgtx may be used to isolate and identify α7-nAChRs as well as how the expression of chaperones such as Ric-3 can influence proteins associating with α7-nAChRs. These associating proteins may alter activities of α7-nAChRs to expand their functionally-relevant repertoire as well as to affect biogenesis and membrane trafficking of α7-nAChRs.  相似文献   
999.
1000.
Larger testes are considered the quintessential adaptation to sperm competition. However, the strong focus on testis size in evolutionary research risks ignoring other potentially adaptive features of testicular function, many of which will also be shaped by post‐mating sexual selection. Here we advocate a more integrated research programme that simultaneously takes into account the developmental machinery of spermatogenesis and the various selection pressures that act on this machinery and its products. The testis is a complex organ, and so we begin by outlining how we can think about the evolution of testicular function both in terms of the composition and spatial organisation of the testis (‘testicular histology’), as well as in terms of the logical organisation of cell division during spermatogenesis (‘testicular architecture’). We then apply these concepts to ask which aspects of testicular function we can expect to be shaped by post‐mating sexual selection. We first assess the impact of selection on those traits most strongly associated with sperm competition, namely the number and kind of sperm produced. A broad range of studies now support our contention that post‐mating sexual selection affects many aspects of testicular function besides gross testis size, for example, to maximise spermatogenic efficiency or to enable the production of particular sperm morphologies. We then broaden our focus to ask how testicular function is affected by fluctuation in sperm demand. Such fluctuation can occur over an individual's lifetime (for example due to seasonality in reproduction) and may select for particular types of testicular histology and architecture depending on the particular reproductive ecology of the species in question. Fluctuation in sperm demand also occurs over evolutionary time, due to shifts in the mating system, and this may have various consequences for testicular function, for example on rates of proliferation‐induced mutation and for dealing with intragenomic conflict. We end by suggesting additional approaches that could be applied to study testicular function, and conclude that simultaneously considering the machinery, products and scheduling of spermatogenesis will be crucial as we seek to understand more fully the evolution of this most fundamental of male reproductive traits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号