首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2712篇
  免费   249篇
  2961篇
  2023年   23篇
  2022年   41篇
  2021年   71篇
  2020年   45篇
  2019年   53篇
  2018年   67篇
  2017年   51篇
  2016年   85篇
  2015年   137篇
  2014年   141篇
  2013年   148篇
  2012年   204篇
  2011年   168篇
  2010年   128篇
  2009年   91篇
  2008年   125篇
  2007年   126篇
  2006年   113篇
  2005年   101篇
  2004年   96篇
  2003年   96篇
  2002年   82篇
  2001年   54篇
  2000年   46篇
  1999年   45篇
  1998年   30篇
  1997年   13篇
  1996年   23篇
  1995年   17篇
  1992年   23篇
  1991年   28篇
  1990年   31篇
  1989年   23篇
  1988年   20篇
  1987年   28篇
  1986年   25篇
  1985年   31篇
  1984年   18篇
  1983年   19篇
  1982年   19篇
  1981年   14篇
  1980年   12篇
  1979年   28篇
  1976年   18篇
  1975年   15篇
  1974年   20篇
  1973年   21篇
  1972年   13篇
  1971年   13篇
  1970年   11篇
排序方式: 共有2961条查询结果,搜索用时 15 毫秒
991.
The impact of point mutations in mitochondrial tRNA genes on the amount and stability of respiratory chain complexes and ATP synthase (OXPHOS) has been broadly characterized in cultured skin fibroblasts, skeletal muscle samples, and mitochondrial cybrids. However, less is known about how these mutations affect other tissues, especially the brain. We have compared OXPHOS protein deficiency patterns in skeletal muscle mitochondria of patients with Leigh (8363G>A), MERRF (8344A>G), and MELAS (3243A>G) syndromes. Both mutations that affect mt-tRNA(Lys) (8363G>A, 8344A>G) resulted in severe combined deficiency of complexes I and IV, compared to an isolated severe defect of complex I in the 3243A>G sample (mt-tRNA(LeuUUR). Furthermore, we compared obtained patterns with those found in the heart, frontal cortex, and liver of 8363G>A and 3243A>G patients. In the frontal cortex mitochondria of both patients, the patterns of OXPHOS deficiencies differed substantially from those observed in other tissues, and this difference was particularly striking for ATP synthase. Surprisingly, in the frontal cortex of the 3243A>G patient, whose ATP synthase level was below the detection limit, the assembly of complex IV, as inferred from 2D-PAGE immunoblotting, appeared to be hindered by some factor other than the availability of mtDNA-encoded subunits.  相似文献   
992.
993.
994.
995.
996.
997.
998.
The aim of this study was to evaluate the effect of active immunization against GnRH on ovarian activity, plasma progesterone and estradiol concentrations and on estrous behavior in adult mares. Eighteen cyclic mares were randomly divided into a treatment and control group. Nine mares were immunized twice with 2 mL (400 microg GnRH-protein conjugate) of a GnRH-vaccine (Improvac, CSL Limited, Australia) administered intramuscularly, 4 weeks apart. Control mares received the same amount of saline solution. Ovaries and uterus of all mares were examined weekly by ultrasonography from 3 weeks before to 60 weeks after first immunization. Thereafter, vaccinated mares were evaluated monthly until 100 weeks after first vaccination. In addition, mares were teased with a stallion for assessment of estrous behavior and blood was collected for progesterone, estradiol-17beta and GnRH antibody titer determination. Results demonstrate that vaccination against GnRH significantly (P<0.05) influenced all parameters, except estradiol-17beta concentration. All vaccinated mares ceased reproductive cyclicity (plasma progesterone <1 ng/mL, follicles <3 cm) within 8 weeks after the first injection and ovarian activity remained suppressed for a minimum of 23 weeks. Five mares resumed cyclicity (follicles >3 cm, progesterone >1 ng/mL) while three mares showed only follicular activity (follicles >3 cm) and one mare remained completely suppressed for the entire duration of the study. In spite of ovarian suppression, four mares expressed sporadic and one mare continuous estrous behavior. In conclusion, reproductive cyclicity in adult mares can be successfully suppressed by immunization against GnRH but the timing of resumption of cyclicity is highly variable and estrous behavior may occur in spite of ovarian suppression.  相似文献   
999.
The solvent-tolerant strain Pseudomonas putida DOT-T1E was grown in batch fermentations in a 5-liter bioreactor in the presence and absence of 10% (vol/vol) of the organic solvent 1-decanol. The growth behavior and cellular energetics, such as the cellular ATP content and the energy charge, as well as the cell surface hydrophobicity and charge, were measured in cells growing in the presence and absence of 1-decanol. Although the cells growing in the presence of 1-decanol showed an about 10% reduced growth rate and a 48% reduced growth yield, no significant differences were measured either in the ATP and potassium contents or in the energy charge, indicating that the cells adapted completely at the levels of membrane permeability and energetics. Although the bacteria needed additional energy for adaptation to the presence of the solvent, they were able to maintain or activate electron transport phosphorylation, allowing homeostasis of the ATP level and energy charge in the presence of the solvent, at the price of a reduced growth yield. On the other hand, significantly enhanced cell hydrophobicities and more negative cell surface charges were observed in cells grown in the presence of 1-decanol. Both reactions occurred within about 10 min after the addition of the solvent and were significantly different after killing of the cells with toxic concentrations of HgCl2. This adaptation of the surface properties of the bacterium to the presence of solvents seems to be very similar to previously observed reactions on the level of lipopolysaccharides, with which bacteria adapt to environmental stresses, such as heat shock, antibiotics, or low oxygen content. The results give clear physiological indications that the process with P. putida DOT-T1E as the biocatalyst and 1-decanol as the solvent is a stable system for two-phase biotransformations that will allow the production of fine chemicals in economically sound amounts.  相似文献   
1000.
Castor bean (Ricinus communis L.) plants were hydroponically cultivated to achieve NO3 deficiency (N starvation), salt stress (addition of 100 mM NaCl), or normal conditions. Endodermal (ECW) and rhizodermal and hypodermal cell walls (RHCW) were isolated enzymatically from roots, and suberin monomers were released by transesterification after solvent extraction. Aromatic and aliphatic suberin monomers were identified and quantified by gas chromatography and mass spectrometry. Between 90 and 95% of the released suberin monomers were linear, long-chain, aliphatic compounds (alcohols, acids, diacids, ω-hydroxy acids and 2-hydroxy acids) with an average chain length of 19 C-atoms. The remainder was an aromatic suberin fraction mainly composed of coumaric and ferulic acid. Suberin amounts were significantly increased in ECW and RHCW in the presence of NaCl. In contrast, N starvation led to significantly reduced levels of suberization in ECW and RHCW. It is concluded that R. communis plants reinforce their apoplastic transport barriers in roots in adaptation to NaCl stress in order to minimize NaCl uptake. Under conditions of N starvation the opposite occurs and plants reduce the suberization of their apoplastic transport barriers to facilitate nutrient uptake form the soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号