首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2711篇
  免费   250篇
  2961篇
  2023年   23篇
  2022年   41篇
  2021年   71篇
  2020年   45篇
  2019年   53篇
  2018年   67篇
  2017年   51篇
  2016年   85篇
  2015年   137篇
  2014年   141篇
  2013年   148篇
  2012年   204篇
  2011年   168篇
  2010年   128篇
  2009年   91篇
  2008年   125篇
  2007年   126篇
  2006年   113篇
  2005年   101篇
  2004年   96篇
  2003年   96篇
  2002年   82篇
  2001年   54篇
  2000年   46篇
  1999年   45篇
  1998年   30篇
  1997年   13篇
  1996年   23篇
  1995年   17篇
  1992年   23篇
  1991年   28篇
  1990年   31篇
  1989年   23篇
  1988年   20篇
  1987年   28篇
  1986年   25篇
  1985年   31篇
  1984年   18篇
  1983年   19篇
  1982年   19篇
  1981年   14篇
  1980年   12篇
  1979年   28篇
  1976年   18篇
  1975年   15篇
  1974年   20篇
  1973年   21篇
  1972年   13篇
  1971年   13篇
  1970年   11篇
排序方式: 共有2961条查询结果,搜索用时 15 毫秒
91.
Yellow-related proteins (YRPs) present in sand fly saliva act as affinity binders of bioamines, and help the fly to complete a bloodmeal by scavenging the physiological signals of damaged cells. They are also the main antigens in sand fly saliva and their recombinant form is used as a marker of host exposure to sand flies. Moreover, several salivary proteins and plasmids coding these proteins induce strong immune response in hosts bitten by sand flies and are being used to design protecting vaccines against Leishmania parasites. In this study, thirty two 3D models of different yellow-related proteins from thirteen sand fly species of two genera were constructed based on the known protein structure from Lutzomyia longipalpis. We also studied evolutionary relationships among species based on protein sequences as well as sequence and structural variability of their ligand-binding site. All of these 33 sand fly YRPs shared a similar structure, including a unique tunnel that connects the ligand-binding site with the solvent by two independent paths. However, intraspecific modifications found among these proteins affects the charges of the entrances to the tunnel, the length of the tunnel and its hydrophobicity. We suggest that these structural and sequential differences influence the ligand-binding abilities of these proteins and provide sand flies with a greater number of YRP paralogs with more nuanced answers to bioamines. All these characteristics allow us to better evaluate these proteins with respect to their potential use as part of anti-Leishmania vaccines or as an antigen to measure host exposure to sand flies.  相似文献   
92.
Two extracellular matrix cell surface proteins which bind the proteoglycan-like aggregation factor from the marine sponge Microciona prolifera (MAF) and which may function as physiological receptors for MAF were identified and characterized for the first time. By probing nitrocellulose blots of nonreducing sodium dodecyl sulfate gels containing whole sponge cell protein with iodinated MAF, a 210- and a 68-kDa protein, which have native molecular masses of approximately 200-400 and 70 kDa, were identified. MAF binding to blots is species-specific. It is also sensitive to reduction and is completely abolished by pretreatment of live cells with proteases, as was cellular aggregation, indicating that the 210- and 68-kDa proteins may be located on the cell surface. The additional observations that the 68 kDa is an endoglycosidase F-sensitive glycoprotein and that antisera against whole sponge cells or membranes can immunoprecipitate the 210 kDa when prebound to intact cells are consistent with a cell surface location. Both proteins can be isolated from sponge cell membranes and from the sponge skeleton (insoluble extracellular matrix), but the 210-kDa MAF-binding protein can also be found in the soluble extracellular matrix (buffer washes of cells and skeleton) as well. A third MAF-binding protein of molecular mass 95 kDa was also found in the sponge extracellular matrix but rarely on cells. Both of the cell-associated 210- and 68-kDa proteins are nonintegral membrane proteins, based on Triton X-114 phase separation, flotation of liposomes containing sponge membrane lysates, and their extraction from membranes by buffer washes. Both proteins bind MAF affinity resins, indicating that they each exhibit a moderate affinity for MAF under native conditions. They can also be separated from each other and from the bulk of the protein in an octylpolyoxyethylene extract of membranes by fast protein liquid chromatography Mono Q anion exchange chromatography, as assessed by native dot blot and denaturing Western blot assays. Although neither protein bound to heparin, gelatin, hexosamine, or uronic acid-Sepharose resins, their affinity for an invertebrate proteoglycan, their roles in sponge cell adhesion, and their peripheral membrane protein natures suggest that they may represent early invertebrate analogs of cell-associated vertebrate extracellular matrix adhesion proteins, such as fibronectin or vitronectin, or else an entirely novel set of cell adhesion molecules.  相似文献   
93.
The cornea of the urodele amphibian Triturus c. cristatus was studied ultrastructurally in order to provide the basis for a comparison among corneas throughout the vertebrate phylum. The cornea of this salamander consists of relatively thick epithelium and basement membrane and thin Descemet's membrane, unlike the mammalian corneas. The outermost epithelial cells contain Ruthenium Red stainable extracellular filaments and intracellular vesicles which are thought to play a role in the process of lubricating the corneal surface. Occluding junctions have been observed in the apical region of the superficial epithelial cells and are considered as barriers to the intercellular passage of material. A thin substantia propria (stroma) consists of about 40 collagenous highly organized lamellae. The thicknesses of the basement membrane, Descemet's membrane and the epithelium are believed to represent the primitive situation in the process of corneal evolution.  相似文献   
94.
95.
S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The co-expression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70) has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK) function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdoMetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdoMetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant plasmodial proteins in E. coli.  相似文献   
96.
Several nonsedating histamine H1-receptor antagonists are associated with torsades de pointes ventricular tachycardia. The objectives of this study were to: (i) compare electrocardiographic, monophasic action potential, and arrhythmogenic effects of sedating and nonsedating H1-receptor antagonists, and (ii) identify correlates of drug-induced torsades de pointes in an isolated ventricle model. Isolated, electrically paced (1-3 Hz) rabbit ventricles were Langendorff-perfused with either drug-free Tyrode's solution or one of the following: (i) the sedating H1-receptor antagonist hydroxyzine (0.1-30 microM), (ii) cetirizine, a nonsedating metabolite of hydroxyzine (1-300 microM), and (iii) the nonsedating, putatively arrhythmogenic H1-receptor antagonist astemizole (0.1-30 microM). Volume conducted electrocardiographic signals and monophasic action potentials from the periapical left ventricular endocardium and epicardium were recorded. There were no apparent changes in control (n = 15) or hydroxyzine-perfused (n = 7) hearts. Cetirizine (n = 13) produced a mild biphasic electrocardiographic QT interval prolongation and was associated with early afterdepolarizations, but not with torsades de pointes. Astemizole (n = 11) lengthened QT intervals, and at high concentration (30 microM) induced torsades de pointes in 10 of 11 hearts (P < 0.001 vs. all other groups). These findings are consistent with previously reported repolarizing current inhibition by cetirizine, but may additionally indicate "compensatory" inhibition of inward currents at higher concentrations. By contrast, astemizole-induced changes are consistent with unopposed repolarizing current inhibition.  相似文献   
97.
Quantitative mass-spectrometry-based spatial proteomics involves elaborate, expensive, and time-consuming experimental procedures, and considerable effort is invested in the generation of such data. Multiple research groups have described a variety of approaches for establishing high-quality proteome-wide datasets. However, data analysis is as critical as data production for reliable and insightful biological interpretation, and no consistent and robust solutions have been offered to the community so far. Here, we introduce the requirements for rigorous spatial proteomics data analysis, as well as the statistical machine learning methodologies needed to address them, including supervised and semi-supervised machine learning, clustering, and novelty detection. We present freely available software solutions that implement innovative state-of-the-art analysis pipelines and illustrate the use of these tools through several case studies involving multiple organisms, experimental designs, mass spectrometry platforms, and quantitation techniques. We also propose sound analysis strategies for identifying dynamic changes in subcellular localization by comparing and contrasting data describing different biological conditions. We conclude by discussing future needs and developments in spatial proteomics data analysis.  相似文献   
98.
Organelle genomics has become an increasingly important research field, with applications in molecular modeling, phylogeny, taxonomy, population genetics and biodiversity. Typically, research projects involve the determination and comparative analysis of complete mitochondrial and plastid genome sequences, either from closely related species or from a taxonomically broad range of organisms. Here, we describe two alternative organelle genome sequencing protocols. The "random genome sequencing" protocol is suited for the large majority of organelle genomes irrespective of their size. It involves DNA fragmentation by shearing (nebulization) and blunt-end cloning of the resulting fragments into pUC or BlueScript-type vectors. This protocol excels in randomness of clone libraries as well as in time and cost-effectiveness. The "long-PCR-based genome sequencing" protocol is specifically adapted for DNAs of low purity and quantity, and is particularly effective for small organelle genomes. Library construction by either protocol can be completed within 1 week.  相似文献   
99.

Introduction

The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial.

Methods

Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice.

Results

Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-.

Conclusion

Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号