首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3040篇
  免费   246篇
  3286篇
  2023年   23篇
  2022年   48篇
  2021年   83篇
  2020年   44篇
  2019年   65篇
  2018年   70篇
  2017年   56篇
  2016年   90篇
  2015年   146篇
  2014年   140篇
  2013年   151篇
  2012年   238篇
  2011年   179篇
  2010年   122篇
  2009年   99篇
  2008年   134篇
  2007年   141篇
  2006年   125篇
  2005年   104篇
  2004年   105篇
  2003年   103篇
  2002年   113篇
  2001年   79篇
  2000年   63篇
  1999年   61篇
  1998年   39篇
  1997年   19篇
  1996年   26篇
  1995年   17篇
  1994年   16篇
  1992年   35篇
  1991年   35篇
  1990年   39篇
  1989年   46篇
  1988年   19篇
  1987年   24篇
  1986年   27篇
  1985年   26篇
  1984年   30篇
  1983年   22篇
  1981年   17篇
  1980年   22篇
  1979年   18篇
  1978年   14篇
  1977年   13篇
  1976年   13篇
  1975年   20篇
  1974年   23篇
  1973年   19篇
  1971年   13篇
排序方式: 共有3286条查询结果,搜索用时 15 毫秒
991.
The maintenance of energetically costly flagella by bacteria in non-water-saturated media, such as soil, still presents an evolutionary conundrum. Potential explanations have focused on rare flooding events allowing dispersal. Such scenarios, however, overlook bacterial dispersal along mycelia as a possible transport mechanism in soils. The hypothesis tested in this study is that dispersal along fungal hyphae may lead to an increase in the fitness of flagellated bacteria and thus offer an alternative explanation for the maintenance of flagella even in unsaturated soils. Dispersal along fungal hyphae was shown for a diverse array of motile bacteria. To measure the fitness effect of dispersal, additional experiments were conducted in a model system mimicking limited dispersal, using Pseudomonas putida KT2440 and its nonflagellated (ΔfliM) isogenic mutant in the absence or presence of Morchella crassipes mycelia. In the absence of the fungus, flagellar motility was beneficial solely under conditions of water saturation allowing dispersal, while under conditions limiting dispersal, the nonflagellated mutant exhibited a higher level of fitness than the wild-type strain. In contrast, in the presence of a mycelial network under conditions limiting dispersal, the flagellated strain was able to disperse using the mycelial network and had a higher level of fitness than the mutant. On the basis of these results, we propose that the benefit of mycelium-associated dispersal helps explain the persistence of flagellar motility in non-water-saturated environments.  相似文献   
992.
The SOL Genomics Network (SGN; http://sgn.cornell.edu) is a rapidly evolving comparative resource for the plants of the Solanaceae family, which includes important crop and model plants such as potato (Solanum tuberosum), eggplant (Solanum melongena), pepper (Capsicum annuum), and tomato (Solanum lycopersicum). The aim of SGN is to relate these species to one another using a comparative genomics approach and to tie them to the other dicots through the fully sequenced genome of Arabidopsis (Arabidopsis thaliana). SGN currently houses map and marker data for Solanaceae species, a large expressed sequence tag collection with computationally derived unigene sets, an extensive database of phenotypic information for a mutagenized tomato population, and associated tools such as real-time quantitative trait loci. Recently, the International Solanaceae Project (SOL) was formed as an umbrella organization for Solanaceae research in over 30 countries to address important questions in plant biology. The first cornerstone of the SOL project is the sequencing of the entire euchromatic portion of the tomato genome. SGN is collaborating with other bioinformatics centers in building the bioinformatics infrastructure for the tomato sequencing project and implementing the bioinformatics strategy of the larger SOL project. The overarching goal of SGN is to make information available in an intuitive comparative format, thereby facilitating a systems approach to investigations into the basis of adaptation and phenotypic diversity in the Solanaceae family, other species in the Asterid clade such as coffee (Coffea arabica), Rubiaciae, and beyond.  相似文献   
993.
Aim This analysis of caterpillar (Lepidoptera) beta‐diversity between tropical lowlands and highlands attempts to separate the effects of between‐site (1) turnover of herbivore species on particular host plants, (2) changes in host use by herbivores, and (3) turnover of plant species on changes in herbivore assemblages. Location Two rain forest areas 130 km and 1700 altitudinal metres apart were studied in Papua New Guinea: one in the lowlands (100 m a.s.l.) on the northern coast of the island and one in the central New Guinean cordillera at 1800 m a.s.l. Methods The analysis is based on caterpillar feeding records obtained by quantitative sampling and rearing of caterpillars from four Ficus species studied in the mountains and 21 Ficus species and 62 plant species from other genera and families studied in the lowlands, including three Ficus species studied in both areas. Results Only 17% of species feeding on Ficus in the highlands also occurred in the lowlands. These species represented 1–46% of individuals in caterpillar assemblages on particular Ficus hosts. Widespread species included both Ficus specialists and generalists feeding on numerous plant families. Some of the Ficus specialists changed their preferred host species with altitude. High species turnover was not explained by changes in the species composition of host plants with altitude as lowland and montane assemblages feeding on the same Ficus species showed high turnover. Despite the rarity of widespread caterpillars, the lowland and montane Ficus assemblages were remarkably similar in their dominance structure, species richness, host specificity, generic composition and familial composition. Main conclusions Ficus‐feeding Lepidoptera assemblages between tropical lowlands and highlands are characterized by substantial species turnover not explained by altitudinal changes in the composition of the vegetation. Further, species‐rich plant genera can support caterpillar assemblages with relatively low beta‐diversity compared with species‐poor genera as caterpillars can switch their host preferences from one congeneric host species to another along an altitudinal gradient. Closely related plant species can thus represent a broad, continuously distributed resource along such gradients.  相似文献   
994.
Architecturally conserved viral portal dodecamers are central to capsid assembly and DNA packaging. To examine bacteriophage T4 portal functions, we constructed, expressed and assembled portal gene 20 fusion proteins. C-terminally fused (gp20-GFP, gp20-HOC) and N-terminally fused (GFP-gp20 and HOC-gp20) portal fusion proteins assembled in vivo into active phage. Phage assembled C-terminal fusion proteins were inaccessible to trypsin whereas assembled N-terminal fusions were accessible to trypsin, consistent with locations inside and outside the capsid respectively. Both N- and C-terminal fusions required coassembly into portals with approximately 50% wild-type (WT) or near WT-sized 20am truncated portal proteins to yield active phage. Trypsin digestion of HOC-gp20 portal fusion phage showed comparable protection of the HOC and gp20 portions of the proteolysed HOC-gp20 fusion, suggesting both proteins occupy protected capsid positions, at both the portal and the proximal HOC capsid-binding sites. The external portal location of the HOC portion of the HOC-gp20 fusion phage was confirmed by anti-HOC immuno-gold labelling studies that showed a gold 'necklace' around the phage capsid portal. Analysis of HOC-gp20-containing proheads showed increased HOC protein protection from trypsin degradation only after prohead expansion, indicating incorporation of HOC-gp20 portal fusion protein to protective proximal HOC-binding sites following this maturation. These proheads also showed no DNA packaging defect in vitro as compared with WT. Retention of function of phage and prohead portals with bulky internal (C-terminal) and external (N-terminal) fusion protein extensions, particularly of apparently capsid tethered portals, challenges the portal rotation requirement of some hypothetical DNA packaging mechanisms.  相似文献   
995.
CD44, the major cell surface receptor for hyaluronic acid (HA), was shown to localize to detergent-resistant cholesterol-rich microdomains, called lipid rafts, in fibroblasts and blood cells. Here, we have investigated the molecular environment of CD44 within the plane of the basolateral membrane of polarized mammary epithelial cells. We show that CD44 partitions into lipid rafts that contain annexin II at their cytoplasmic face. Both CD44 and annexin II were released from these lipid rafts by sequestration of plasma membrane cholesterol. Partition of annexin II and CD44 to the same type of lipid rafts was demonstrated by cross-linking experiments in living cells. First, when CD44 was clustered at the cell surface by anti-CD44 antibodies, annexin II was recruited into the cytoplasmic leaflet of CD44 clusters. Second, the formation of intracellular, submembranous annexin II-p11 aggregates caused by expression of a trans-dominant mutant of annexin II resulted in coclustering of CD44. Moreover, a frequent redirection of actin bundles to these clusters was observed. These basolateral CD44/annexin II-lipid raft complexes were stabilized by addition of GTPgammaS or phalloidin in a semipermeabilized and cholesterol-depleted cell system. The low lateral mobility of CD44 in the plasma membrane, as assessed with fluorescent recovery after photobleaching (FRAP), was dependent on the presence of plasma membrane cholesterol and an intact actin cytoskeleton. Disruption of the actin cytoskeleton dramatically increased the fraction of CD44 which could be recovered from the light detergent-insoluble membrane fraction. Taken together, our data indicate that in mammary epithelial cells the vast majority of CD44 interacts with annexin II in lipid rafts in a cholesterol-dependent manner. These CD44-containing lipid microdomains interact with the underlying actin cytoskeleton.  相似文献   
996.
Male Sterile2 (MS2) is predicted to encode a fatty acid reductase required for pollen wall development in Arabidopsis (Arabidopsis thaliana). Transient expression of MS2 in tobacco (Nicotiana benthamiana) leaves resulted in the accumulation of significant levels of C16 and C18 fatty alcohols. Expression of MS2 fused with green fluorescent protein revealed that an amino-terminal transit peptide targets the MS2 to plastids. The plastidial localization of MS2 is biologically important because genetic complementation of MS2 in ms2 homozygous plants was dependent on the presence of its amino-terminal transit peptide or that of the Rubisco small subunit protein amino-terminal transit peptide. In addition, two domains, NAD(P)H-binding domain and sterile domain, conserved in MS2 and its homologs were also shown to be essential for MS2 function in pollen exine development by genetic complementation testing. Direct biochemical analysis revealed that purified recombinant MS2 enzyme is able to convert palmitoyl-Acyl Carrier Protein to the corresponding C16:0 alcohol with NAD(P)H as the preferred electron donor. Using optimized reaction conditions (i.e. at pH 6.0 and 30°C), MS2 exhibits a Km for 16:0-Acyl Carrier Protein of 23.3 ± 4.0 μm, a Vmax of 38.3 ± 4.5 nmol mg−1 min−1, and a catalytic efficiency/Km of 1,873 m−1 s−1. Based on the high homology of MS2 to other characterized fatty acid reductases, it was surprising that MS2 showed no activity against palmitoyl- or other acyl-coenzyme A; however, this is consistent with its plastidial localization. In summary, genetic and biochemical evidence demonstrate an MS2-mediated conserved plastidial pathway for the production of fatty alcohols that are essential for pollen wall biosynthesis in Arabidopsis.In flowering plants, the life cycle alternates between diploid sporophyte and haploid gametophyte generations. Pollen grains play a biologically protective role for the haploid male sperm cells surrounded by the outer cell wall lipidic biopolymers called the exine (Blackmore et al., 2007; Li and Zhang, 2010; Ariizumi and Toriyama, 2011). Pollen exine protects the gametophyte against pathogen attack, dehydration, and UV irradiation as well as facilitates the pollination process, including pollen recognition and adhesion to the stigma. The highly durable exine that occurs throughout flowering plants is thought to play an essential role in land colonization by plants (Chaloner, 1976).The exine is mainly composed of the biopolymer sporopollenin and contains two sublayers, the sexine and nexine (Zinkl et al., 1999). The biochemical nature of pollen exine remains largely unknown because of the technical difficulties in purifying and obtaining large quantities of materials for analysis. In addition, sporopollenin is highly insoluble, resistant to degradation, and exceptionally stable (Brooks and Shaw, 1968; Bubert et al., 2002). Current evidence suggests that the major components of sporopollenin are derivatives of aliphatics, such as fatty acids and phenolic compounds (Bubert et al., 2002; Blackmore et al., 2007).Tapetum, the innermost sporophytic anther wall layer, is thought to play a major role in actively synthesizing and secreting sporopollenin precursors onto the microspore surface for pollen exine polymerization and patterning (Bedinger, 1992; Li and Zhang, 2010; Ariizumi and Toriyama, 2011). The model dicot plant Arabidopsis (Arabidopsis thaliana) and many other plants have a secretory-type tapetum with specialized structures such as tapetosomes in the cells, which accumulate lipidic components (Huysmans et al., 1998). The outer surface of Arabidopsis pollen grains displays elegant reticulate cavities with abundant pollen coat (tryphine) deposited inside the pollen exine.Pollen exine patterning appears to include at least three major developmental events: callose wall formation, primexine formation, and sporopollenin synthesis (Ariizumi and Toriyama, 2011). Exine formation commences after meiosis, with the accumulation of lipidic precursors onto the primexine surrounding newly formed microspores between the callose wall and the microspore plasma membrane (Paxson-Sowders et al., 2001; Blackmore et al., 2007). After the first pollen mitosis, the synthesis of the exine is almost complete; and during later stages of pollen exine formation, the pectocellulosic intine and the tryphine, called the pollen coat, are deposited onto the pollen wall (Piffanelli et al., 1998). Recent genetic and biochemical investigations showed that some genes, including MALE STERILITY1 (MS1), MS2, CER1, NO EXINE FORMATION1, FACELESS POLLEN1, CYP703A2, ACYL-COA SYNTHETASE5 (ACOS5), CYP704B1, TETRAKETIDE α-PYRONE REDUCTASE1 and -2 (TKPR1/2), LAP6/POLYKETIDE SYNTHASE A (PKSA), and LAP5/POLYKETIDE SYNTHASE B (PKSB) in Arabidopsis (Aarts et al., 1995, 1997; Wilson et al., 2001; Ariizumi et al., 2003, 2004; Morant et al., 2007; de Azevedo Souza et al., 2009; Dobritsa et al., 2009, 2010; Grienenberger et al., 2010; Kim et al., 2010b) as well as Tapetum Degeneration Retardation, Wax-Deficient Anther1, CYP704B2, C6, Postmeiotic Deficient Anther1, and Persistent Tapetal Cell1 in rice (Oryza sativa; Jung et al., 2006; Zhang et al., 2008, 2010, 2011; Hu et al., 2010; Li et al., 2006, 2010, 2011; Li and Zhang, 2010), are required for pollen exine synthesis. However, relatively little has been described on the biochemical aspects of these gene products.Fatty alcohols are widely observed in plants, animals, and algae in free forms (the component of cuticular lipids) but more frequently in esterified (wax esters) or etherified (glyceryl ethers) forms. Fatty alcohols and their derivatives are major components of the lipidic anther cuticle and pollen wall (Ahlers et al., 1999; Kunst and Samuels, 2003; Jung et al., 2006; Li et al., 2010). Previous investigations revealed that fatty acyl-CoAs are thought to be used as substrates for the production of fatty alcohols by fatty acyl-coenzyme A reductase (FAR) in garden pea (Pisum sativum), jojoba (Simmondsia chinensis), Arabidopsis, wheat (Triticum aestivum), mouse (Mus musculus), and silk moth (Bombyx mori; Aarts et al., 1997; Metz et al., 2000; Wang et al., 2002; Moto et al., 2003; Cheng and Russell, 2004; Rowland et al., 2006; Doan et al., 2009; Domergue et al., 2010).MS2 was assumed to encode a FAR-like protein that converts fatty acids to alcohols. MS2 was shown to be expressed in the tapetum shortly after the microspore was released from the tetrad (Aarts et al., 1997). ms2 mutants display abnormal pollen wall development, which is sensitive to acetolysis treatment, causing reduced pollen fertility (Aarts et al., 1997; Dobritsa et al., 2009). However, detailed biochemical characterization of the MS2 enzyme has not been performed. Recently, recombinant bacteria expressing five Arabidopsis FAR homologs were shown to produce fatty alcohols with carbon lengths of C14, C16, and C18 from endogenous bacterial fatty acids. Bacteria expressing MS2 are able to form C14:0, C16:0, and C18:1 alcohols (Doan et al., 2009). Furthermore, yeast cells expressing FAR1, FAR4, and FAR5 are able to produce alcohols using distinct but overlapping substrates with a chain length ranging from C18:0 to C24:0 (Domergue et al., 2010).In this study, we report the biochemical characterization of MS2. We show that MS2 encodes a fatty acyl-Acyl Carrier Protein (ACP) reductase, and the purified recombinant MS2 enzyme from Escherichia coli is able to convert the preferred substrate palmitoyl-ACP to C16:0 alcohol in the presence of NAD(P)H. In addition, MS2 possesses an N-terminal transit peptide that is necessary for localization to the plastid. The biological significance of MS2 subcellular localization, and the presence of conserved domains/motifs within MS2, were demonstrated by genetic complementation of ms2 mutants. This work, therefore, demonstrates the involvement of the plastid in primary fatty alcohol synthesis required for pollen wall development in Arabidopsis.  相似文献   
997.
Rat kidney microsomes reduced cephaloridine when incubated anaerobically with NADPH. Superoxide anion was generated in a concentration- and time-dependent manner when cephaloridine was incubated with rat kidney microsomes. Cephaloridine increased the in vitro peroxidation of rat kidney microsomal lipids in a concentration- and time-dependent manner. Cephaloridine-induced lipid peroxidation was inhibited by a combination of superoxide dismutase and catalase, by the hydroxyl radical scavengers, mannitol, (+)-cyanidanol-3 and by the singlet oxygen scavenger histidine in a concentration-dependent manner. It is proposed that cephaloridine nephrotoxicity may occur through the transfer of an electron from reduced cephaloridine to oxygen and subsequent formation of the superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These activated oxygen species then are very likely to react with membrane lipids to induce lipid peroxidation and nephrotoxicity.  相似文献   
998.
Staphylococcus aureus is a major human pathogen associated with high mortality. The emergence of antibiotic resistance and the inability of antibiotics to counteract bacterial cytotoxins involved in the pathogenesis of S. aureus call for novel therapeutic approaches, such as passive immunization with monoclonal antibodies (mAbs). The complexity of staphylococcal pathogenesis and past failures with single mAb products represent considerable barriers for antibody-based therapeutics. Over the past few years, efforts have focused on neutralizing α-hemolysin. Recent findings suggest that the concerted actions of several cytotoxins, including the bi-component leukocidins play important roles in staphylococcal pathogenesis. Therefore, we aimed to isolate mAbs that bind to multiple cytolysins by employing high diversity human IgG1 libraries presented on the surface of yeast cells. Here we describe cross-reactive antibodies with picomolar affinity for α-hemolysin and 4 different bi-component leukocidins that share only ∼26% overall amino acid sequence identity. The molecular basis of cross-reactivity is the recognition of a conformational epitope shared by α-hemolysin and F-components of gamma-hemolysin (HlgAB and HlgCB), LukED and LukSF (Panton-Valentine Leukocidin). The amino acids predicted to form the epitope are conserved and known to be important for cytotoxic activity. We found that a single cross-reactive antibody prevented lysis of human phagocytes, epithelial and red blood cells induced by α-hemolysin and leukocidins in vitro, and therefore had superior effectiveness compared to α-hemolysin specific antibodies to protect from the combined cytolytic effect of secreted S. aureus toxins. Such mAb afforded high levels of protection in murine models of pneumonia and sepsis.  相似文献   
999.
The control of food intake and satiety requires a coordinated interplay. Oral protein and duodenal fat inhibit food intake and induce satiety, but their interactive potential is unclear. Our aim was therefore to investigate the interactions between an oral protein preload and intraduodenal (ID) fat on food intake and satiety feelings. Twenty healthy male volunteers were studied in a randomized, double-blind, four-period crossover design. On each study day, subjects underwent one of the following treatments: 1) water preload plus ID saline perfusion, 2) water preload plus ID fat perfusion, 3) protein preload plus ID saline perfusion, or 4) protein preload plus ID fat perfusion. Subjects were free to eat and drink as much as they wished. An oral protein preload significantly reduced caloric intake (19%, P < 0.01). Simultaneous administration of an oral protein preload and ID fat did not result in a positive synergistic effect with respect to caloric consumption, rejecting the initial hypothesis that the two nutrients exert a positive synergistic effect on food intake. An oral protein preload but not ID fat altered the feelings of hunger and fullness. These data indicate that the satiety effect of an oral protein preload is not amplified by ID fat; indeed, the effect of a protein preload does not seem to be mediated by cholecystokinin, glucagon-like peptide-1, or peptide YY. Much more information is necessary to understand the basic physiological mechanisms that control food intake and satiety.  相似文献   
1000.
Although purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living cells, we utilized the FKBP-rapalog-FRB heterodimerization system to develop an in vivo peroxisomal trafficking assay that allows inducible recruitment of exogenous and endogenous kinesin, dynein, and myosin motors to drive specific cargo transport. We demonstrate that cargo rapidly redistributes with distinct dynamics for each respective motor, and that combined (antagonistic) actions of more complex motor combinations can also be probed. Of importance, robust cargo redistribution is readily achieved by one type of motor protein and does not require the presence of opposite-polarity motors. Simultaneous live-cell imaging of microtubules and kinesin or dynein-propelled peroxisomes, combined with high-resolution particle tracking, revealed that peroxisomes frequently pause at microtubule intersections. Titration and washout experiments furthermore revealed that motor recruitment by rapalog-induced heterodimerization is dose-dependent but irreversible. Our assay directly demonstrates that robust cargo motility does not require the presence of opposite-polarity motors, and can therefore be used to characterize the motile properties of specific types of motor proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号