Hepatic encephalopathy (HE) arises from acute or chronic liver diseases and leads to several problems, including motor impairment. Animal models of chronic liver disease have extensively investigated the mechanisms of this disease. Impairment of locomotor activity has been described in different rat models. However, these studies are controversial and the majority has primarily analyzed activity parameters. Therefore, the aim of the present study was to evaluate locomotor and exploratory behavior in bile duct-ligated (BDL) rats to explore the spatial and temporal structure of behavior. Adult female Wistar rats underwent common bile duct ligation (BDL rats) or the manipulation of common bile duct without ligation (control rats). Six weeks after surgery, control and BDL rats underwent open-field, plus-maze and foot-fault behavioral tasks. The BDL rats developed chronic liver failure and exhibited a decrease in total distance traveled, increased total immobility time, smaller number of rearings, longer periods in the home base area and decreased percentage of time in the center zone of the arena, when compared to the control rats. Moreover, the performance of the BDL rats was not different from the control rats for the elevated plus-maze and foot-fault tasks. Therefore, the BDL rats demonstrated disturbed spontaneous locomotor and exploratory activities as a consequence of altered spatio-temporal organization of behavior. 相似文献
Distribution ranges of plant species are related to physical variables of ecosystems that limit plant growth. Therefore, each plant species response to physical factors builds up the functional diversity of an ecosystem. The higher the species richness of an ecosystem, the larger the probability of maintaining functions and the higher the potential number of plant functional groups (FGs). Thus, the richness potentially increases the number of functions of the highly diverse Atlantic Rainforest domain in Brazil. Severe plant growth limitations caused by stress, however, decrease species richness. In the Spodosols of the Mussununga, an associated ecosystem of Atlantic Rainforest, the percentage of fine sand is directly related to water retention. Moreover, the depth of the cementation layer in the Mussununga??s sandy soil is a physical factor that can affect the plants?? stress gradients. When a shallow cementation layer depth is combined with low water retention in soils and with low fine sand percentage, the double stresses of flooding in the rainy season and water scarcity in the dry season result. This study aimed to identify FGs among Mussununga plant species responding to water stress gradients of soil and to verify the effects of the gradients on plant species richness of the Mussununga. A canonical correspondence analysis (CCA) of species abundance and soil texture variables was performed on 18 plots in six physiognomies of the Mussununga. Species richness rarefactions were calculated for each vegetation form to compare diversity. The two main axes of the CCA showed two FGs responding to soil texture and cementation layer depth: stress tolerator species and mesic species. Physical variables affect plant diversity, with species richness rising as the fine sand proportion also rises in the Mussununga. The effect of the cementation layer is not significantly related to species richness variation. 相似文献
The seroprevalence of human T cell leukemia virus type 1 (HTLV-1) infection was investigated in Brazilians (570): native inhabitants (298) and descendants from Japanese (272) living in Recife and its neighborhoods—North-east of Brazil. Furthermore, polytransfused renal transplanted patients (54) were also examined for the serological status to this virus. The seropositivity to HTLV-1, screened by enzyme-linked immunosorbent assay (ELISA), was low: 1.34% for the local population and 0.73% for the descendants from Japanese. However, the seropositivity for the renal transplanted patients was found to be 11.1%. This higher value suggests that this retrovirus infection seems to be of importance in this clinical condition. 相似文献
Engineered polyketide synthases (PKSs) are promising synthetic biology platforms for the production of chemicals with diverse applications. The dehydratase (DH) domain within modular type I PKSs generates an α,β-unsaturated bond in nascent polyketide intermediates through a dehydration reaction. Several crystal structures of DH domains have been solved, providing important structural insights into substrate selection and dehydration. Here, we present two DH domain structures from two chemically diverse PKSs. The first DH domain, isolated from the third module in the borrelidin PKS, is specific towards a trans-cyclopentane-carboxylate-containing polyketide substrate. The second DH domain, isolated from the first module in the fluvirucin B1 PKS, accepts an amide-containing polyketide intermediate. Sequence-structure analysis of these domains, in addition to previously published DH structures, display many significant similarities and key differences pertaining to substrate selection. The two major differences between BorA DH M3, FluA DH M1 and other DH domains are found in regions of unmodeled residues or residues containing high B-factors. These two regions are located between α3–β11 and β7–α2. From the catalytic Asp located in α3 to a conserved Pro in β11, the residues between them form part of the bottom of the substrate-binding cavity responsible for binding to acyl-ACP intermediates.
Distance and discrete geographic barriers play a role in isolating populations, as seed and pollen dispersal become limited. Nearby populations without any geographic barrier between them may also suffer from ecological isolation driven by habitat heterogeneity, which may promote divergence by local adaptation and drift. Likewise, elevation gradients may influence the genetic structure and diversity of populations, particularly those marginally distributed. Bathysa australis (Rubiaceae) is a widespread tree along the elevation gradient of the Serra do Mar, SE Brazil. This self‐compatible species is pollinated by bees and wasps and has autochoric seeds, suggesting restricted gene dispersal. We investigated the distribution of genetic diversity in six B. australis populations at two extreme sites along an elevation gradient: a lowland site (80–216 m) and an upland site (1010–1100 m.a.s.l.). Nine microsatellite loci were used to test for genetic structure and to verify differences in genetic diversity between sites. We found a marked genetic structure on a scale as small as 6 km (FST = 0.21), and two distinct clusters were identified, each corresponding to a site. Although B. australis is continuously distributed along the elevation gradient, we have not observed a gene flow between the extreme populations. This might be related to B. australis biological features and creates a potential scenario for adaptation to the different conditions imposed by the elevation gradient. We failed to find an isolation‐by‐distance pattern; although on the fine scale, all populations showed spatial autocorrelation until ~10‐20 m. Elevation difference was a relevant factor though, but we need further sampling effort to check its correlation with genetic distance. The lowland populations had a higher allelic richness and showed higher rare allele counts than the upland ones. The upland site may be more selective, eliminating rare alleles, as we did not find any evidence for bottleneck. 相似文献
Journal of Insect Behavior - Control of the sugarcane borers, Diatraea saccharalis and Diatraea impersonatella (= D. flavipennella) (Lepidoptera: Crambidae), in Brazil, is based on mass release of... 相似文献
We have successfully delivered a reactive alkylating agent, chlorambucil (Cbl), to the mitochondria of mammalian cells. Here, we characterize the mechanism of cell death for mitochondria-targeted chlorambucil (mt-Cbl) in vitro and assess its efficacy in a xenograft mouse model of leukemia. Using a ρ° cell model, we show that mt-Cbl toxicity is not dependent on mitochondrial DNA damage. We also illustrate that re-targeting Cbl to mitochondria results in a shift in the cell death mechanism from apoptosis to necrosis, and that this behavior is a general feature of mitochondria-targeted Cbl. Despite the change in cell death mechanisms, we show that mt-Cbl is still effective in vivo and has an improved pharmacokinetic profile compared to the parent drug. These findings illustrate that mitochondrial rerouting changes the site of action of Cbl and also alters the cell death mechanism drastically without compromising in vivo efficacy. Thus, mitochondrial delivery allows the exploitation of Cbl as a promiscuous mitochondrial protein inhibitor with promising therapeutic potential. 相似文献
Carbohydrate structures in the interior of a blood group A active substance (MSS) were exposed by one and by two Smith degradations. Reactivities of the original glycoprotein and its Smith degraded products with 13 different lectins and with anti-I Ma were studied by quantitative precipitin assay. MSS and its first Smith degraded product completely precipitated Ricinus communis hemagglutinin with five times less of the first Smith degraded glycoprotein being required for 50% precipitation. The second Smith degraded material precipitated only 90% of the lectin. MSS did not precipitate peanut lectin, whereas its first and second Smith degraded products completely precipitated the lectin. The first Smith degraded glycoprotein also reacted well with Wistaria floribunda, Maclura pomifera, Bauhinia purpurea alba, and Geodia lectins indicating that its carbohydrate moiety could contain dGalNAc, dGalβ1 → 3dGalNAc, dGalβ1 → 4dGlcNAc, dGalβ1 → 3dGlcNAcβ1 → 3dGal and/or dGalβ1 → 4dGlcNAcβ1 → 6dGal and/or dGalβ1 → 4dGlcNAcβ1 → 6dGalNAc determinants at nonreducing ends. The second Smith degraded material precipitated well with Ricinus communis hemagglutinin, Arachis hypogaea, Geodia cydonium, Maclura pomifera, and Helix pomatia lectins showing that dGalNAc, dGalβ1 → 3dGalNAc, dGalβ1 → 4dGlcNAc residues at terminal nonreducing ends could be involved. Monoclonal anti-I Ma (group 1) serum reacted strongly with the first Smith degraded product indicating large numbers of anti-I Ma determinants, dGalβ1 → 4dGlcNAcβ1 → d 6dGal and/or dGalβ1 → 4dGlcNAcβ1 → 6dGalNAc at nonreducing ends. The comparable activities of the native and Smith degraded products with wheat germ lectin indicate capacity to react with DGlcNAc residues at nonreducing ends and/or at positions in the interior of the chain. The totality of lectin reactivities indicates heterogeneity of the carbohydrate side chains. Oligosaccharides with 3H at their reducing ends released from the protein core of the first and second Smith degraded products were obtained by treatment with 0.05 m NaOH and 1 M NaB3H4 at 50 °C for 16 h (Carlson degradation). The liberated reduced oligosaccharides were fractionated by dialysis, followed by retardion, Bio-Gel P-2, P-4, and P-6 columns. They were further purified on charcoal-celite columns, and by preparative paper chromatography and high-pressure liquid chromatography. Their distribution by size was estimated by the yields on dialysis, Bio-Gel P-2, and Bio-Gel P-6 chromatography, and from the radioactivity of the reduced sugars. Of the oligosaccharide fractions from the first Smith degraded product, about 77% of the carbohydrate side chain residues contained from 1 to 6 sugars, 13% from 7 to perhaps 12 sugars, and 10% was nondialyzable (polysaccharides and glycopeptide fragments). Of the second Smith degraded product, approximately 82% of carbohydrate residues had from 1 to 6 sugars, 14% from 7 to perhaps 20 sugars and 4% was nondialyzable. The biological activity profile of the two Smith degraded products together with the size distributions of the oligosaccharides indicated that their carbohydrate side chains, comprised a heterogeneous population ranging in size from 1 to about 12 sugars. When most of these chains that are shorter than hexasaccharides are fully characterized it may be possible to reconstruct the overall structure of the carbohydrate moiety of the blood group substances and account for their biological activities. 相似文献
In the seminiferous epithelium, spermatogonial stem cells (SSCs) are located in a particular environment called the "niche" that is controlled by the basement membrane, key testis somatic cells, and factors originating from the vascular network. However, the role of Leydig cells (LCs) as a niche component is not yet clearly elucidated. Recent studies showed that peccaries (Tayassu tajacu) present a peculiar LC cytoarchitecture in which these cells are located around the seminiferous tubule lobes, making the peccary a unique model for investigating the SSC niche. This peculiarity allowed us to subdivide the seminiferous tubule cross-sections in three different testis parenchyma regions (tubule-tubule, tubule-interstitium, and tubule-LC contact). Our aims were to characterize the different spermatogonial cell types and to determine the location and/or distribution of the SSCs along the seminiferous tubules. Compared to differentiating spermatogonia, undifferentiated spermatogonia (A(und)) presented a noticeably higher nuclear volume (P < 0.05), allowing an accurate evaluation of their distribution. Immunostaining analysis demonstrated that approximately 93% of A(und) were GDNF receptor alpha 1 positive (GFRA1(+)), and these cells were preferentially located adjacent to the interstitial compartment without LCs (P < 0.05). The expression of colony-stimulating factor 1 was observed in LCs and peritubular myoid cells (PMCs), whereas its receptor was present in LCs and in GFRA1(+) A(und). Taken together, our findings strongly suggest that LCs, different from PMCs, might play a minor role in the SSC niche and physiology and that these steroidogenic cells are probably involved in the differentiation of A(und) toward type A(1) spermatogonia. 相似文献