全文获取类型
收费全文 | 4620篇 |
免费 | 198篇 |
国内免费 | 1篇 |
专业分类
4819篇 |
出版年
2024年 | 4篇 |
2023年 | 41篇 |
2022年 | 67篇 |
2021年 | 144篇 |
2020年 | 127篇 |
2019年 | 133篇 |
2018年 | 162篇 |
2017年 | 157篇 |
2016年 | 205篇 |
2015年 | 293篇 |
2014年 | 281篇 |
2013年 | 372篇 |
2012年 | 365篇 |
2011年 | 340篇 |
2010年 | 229篇 |
2009年 | 170篇 |
2008年 | 267篇 |
2007年 | 235篇 |
2006年 | 234篇 |
2005年 | 189篇 |
2004年 | 199篇 |
2003年 | 145篇 |
2002年 | 116篇 |
2001年 | 25篇 |
2000年 | 23篇 |
1999年 | 30篇 |
1998年 | 29篇 |
1997年 | 18篇 |
1996年 | 23篇 |
1995年 | 10篇 |
1994年 | 10篇 |
1993年 | 12篇 |
1992年 | 15篇 |
1991年 | 10篇 |
1990年 | 5篇 |
1989年 | 14篇 |
1988年 | 5篇 |
1986年 | 6篇 |
1985年 | 7篇 |
1984年 | 17篇 |
1983年 | 10篇 |
1982年 | 10篇 |
1981年 | 4篇 |
1980年 | 9篇 |
1979年 | 7篇 |
1978年 | 7篇 |
1976年 | 3篇 |
1975年 | 4篇 |
1974年 | 3篇 |
1958年 | 3篇 |
排序方式: 共有4819条查询结果,搜索用时 15 毫秒
51.
Sánchez-Quitian ZA Timmers LF Caceres RA Rehm JG Thompson CE Basso LA de Azevedo WF Santos DS 《Archives of biochemistry and biophysics》2011,(1):108-115
Cytidine deaminase (CDA) is a key enzyme in the pyrimidine salvage pathway. It is involved in the hydrolytic deamination of cytidine or 2′-deoxycytidine to uridine or 2′-deoxyuridine, respectively. Here we report the crystal structures of Mycobacterium tuberculosis CDA (MtCDA) in complex with uridine (2.4 Å resolution) and deoxyuridine (1.9 Å resolution). Molecular dynamics (MD) simulation was performed to analyze the physically relevant motions involved in the protein–ligand recognition process, showing that structural flexibility of some protein regions are important to product binding. In addition, MD simulations allowed the analysis of the stability of tetrameric MtCDA structure. These findings open-up the possibility to use MtCDA as a target in future studies aiming to the rational design of new inhibitor of MtCDA-catalyzed chemical reaction with potential anti-proliferative activity on cell growth of M. tuberculosis, the major causative agent of tuberculosis. 相似文献
52.
Facchini FD Vici AC Benassi VM Freitas LA Reis RA Jorge JA Terenzi HF Polizeli Mde L 《Bioprocess and biosystems engineering》2011,34(8):1027-1038
Fibrolytic enzyme production by Aspergillus japonicus C03 was optimized in a medium containing agro-industrial wastes, supplemented with peptone and yeast extract. A 23 full factorial composite and response surface methodology were used to design the experiments and analysis of results. Tropical
forages were hydrolyzed by A. japonicus C03 enzymatic extract in different levels, and they were also tested as enzymatic substrate. Optimal production to xylanase
was obtained with soybean bran added to crushed corncob (1:3), 0.01% peptone, and 0.2% yeast extract, initial pH 5.0, at 30 °C
under static conditions for 5 days of incubation. Optimal endoglucanase production was obtained with wheat bran added to sugarcane
bagasse (3:1), 0.01% peptone, and 0.2% yeast extract, initial pH 4.0, at 30 °C, for 6 days, under static conditions. Addition
of nitrogen sources as ammonium salts either inhibited or did not influence xylanase production. This enzymatic extract had
a good result on tropical forage hydrolyzes and showed better performance in the Brachiaria genera, due to their low cell wall lignin quantity. These results represent a step forward toward the use of low-cost agricultural
residues for the production of valuable enzymes with potential application in animal feed, using fermentation conditions. 相似文献
53.
Machado MF Rioli V Dalio FM Castro LM Juliano MA Tersariol IL Ferro ES Juliano L Oliveira V 《The Biochemical journal》2007,404(2):279-288
The physicochemical properties of TOP (thimet oligopeptidase) and NEL (neurolysin) and their hydrolytic activities towards the FRET (fluorescence resonance energy transfer) peptide series Abz-GFSXFRQ-EDDnp [where Abz is o-aminobenzoyl; X=Ala, Ile, Leu, Phe, Tyr, Trp, Ser, Gln, Glu, His, Arg or Pro; and EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine] were compared with those of site-mutated analogues. Mutations at Tyr605 and Ala607 in TOP and at Tyr606 and Gly608 in NEL did not affect the overall folding of the two peptidases, as indicated by their thermal stability, CD analysis and the pH-dependence of the intrinsic fluorescence of the protein. The kinetic parameters for the hydrolysis of substrates with systematic variations at position P1 showed that Tyr605 and Tyr606 of TOP and NEL respectively, played a role in subsite S1. Ala607 of TOP and Gly608 of NEL contributed to the flexibility of the loops formed by residues 600-612 (GHLAGGYDGQYYG; one-letter amino acid codes used) in NEL and 599-611 (GHLAGGYDAQYYG; one-letter amino acid codes used) in TOP contributing to the distinct substrate specificities, particularly with an isoleucine residue at P1. TOP Y605A was inhibited less efficiently by JA-2 {N-[1-(R,S)-carboxy-3-phenylpropyl]Ala-Aib-Tyr-p-aminobenzoate}, which suggested that the aromatic ring of Tyr605 was an important anchor for its interaction with wild-type TOP. The hydroxy groups of Tyr605 and Tyr606 did not contribute to the pH-activity profiles, since the pKs obtained in the assays of mutants TOP Y605F and NEL Y606F were similar to those of wild-type peptidases. However, the pH-kcat/Km dependence curve of TOP Y605A differed from that of wild-type TOP and from TOP Y606F. These results provide insights into the residues involved in the substrate specificities of TOP and NEL and how they select cytosolic peptides for hydrolysis. 相似文献
54.
Michael Sandmann Kamil Sk?odowski Pawel Gajdanowicz Erwan Michard Marcio Rocha Judith L Gomez-Porras Wendy González Luiz Gustavo Guedes Corraa Santiago J Ramírez-Aguilar Tracey Ann Cuin Joost T van Dongen Jean-Baptiste Thibaud Ingo Dreyer 《Plant signaling & behavior》2011,6(4):558-562
Potassium (K+) is an important nutrient for plants. It serves as a cofactor of various enzymes and as the major inorganic solute maintaining plant cell turgor. In a recent study, an as yet unknown role of K+ in plant homeostasis was shown. It was demonstrated that K+ gradients in vascular tissues can serve as an energy source for phloem (re)loading processes and that the voltage-gated K+ channels of the AKT2-type play a unique role in this process. The AKT2 channel can be converted by phosphorylation of specific serine residues (S210 and S329) into a non-rectifying channel that allows a rapid efflux of K+ from the sieve element/companion cells (SE/CC) complex. The energy of this flux is used by other transporters for phloem (re)loading processes. Nonetheless, the results do indicate that post-translational modifications at S210 and S329 alone cannot explain AKT2 regulation. Here, we discuss the existence of multiple post-translational modification steps that work in concert to convert AKT2 from an inward-rectifying into a non-rectifying K+ channel.Key words: potassium, channel, potassium channel, AKT2, phloem (re)loading, post-translational modifications, potassium batteryPotassium (K+) is the most abundant mineral element in plants, and together with nitrogen and phosphorous, is limiting for plant production in many natural and agricultural habitats. Voltage-gated K+ channels are key players in the acquisition of K+ ions from the soil and in its redistribution within the plant.1 Structurally, these channels result from the assembly of four so-called α-subunits. The subunits are encoded by nine genes in Arabidopsis and both homo- and hetero-tetramers are expressed.2,3 The K+ channel α-subunits can be categorized into four different subfamilies, based on the voltage-gating characteristics of the exogenous K+ conductance when expressed in an appropriate heterologous expression system. Kin α-subunits form hyperpolarization-activated channels that mediate K+ uptake.4–7 Kout α-subunits form depolarization-activated channels that mediate K+ release from cells.8–10 Ksilent subunits appear unable to yield functional homomeric channels, but can combine with Kin subunits and fine-tune the K+-uptake properties of the resulting heteromeric channels.11–14 Finally, Kweak α-subunits form channels with complex voltage-gating; they allow both K+ uptake and release.15–19 In Arabidopsis, a single member is found in this subfamily, AKT2, and this channel can assemble in heteromeric channels with the Kin subunit KAT2.20To date, only scarce and speculative information has been obtained for the function of Kweak channels. When expressed in heterologous expression systems, two different subpopulations of AKT2 channels differing in their sensitivity to voltage were found.21 Channels of the first type showed gating properties and currents analogous to that of Kin channels, while the other sort enabled a non-rectified (leak-like) current; they were open over the entire physiological voltage range.A given channel can be converted from one type to the other by post-translational modifications.21 A voltage-dependent phosphorylation was found to be an essential step for this switch,22,23 although the kinase responsible for this conversion still needs to be uncovered.24 In biophysical studies, mutant versions of the Arabidopsis Kweak channel subunit AKT2 have been created that showed impaired gating mode settings.22,23 Recently, Gajdanowicz et al. generated transgenic Arabidopsis thaliana plants that express these mutant AKT2 channels in the background of the akt2-1 null-allele plant.25 The major conclusion from analyses of these mutants is that the status switching of AKT2 from an inward-rectifying to a non-rectifying channel is crucial for plants to overcome energy-limiting conditions. This function of AKT2 could be correlated to its expression in phloem tissues. Selective expression of AKT2 under the control of the phloem companion cell-specific AtSUC2 promoter rescued the akt2-1 line, but conversely, selective expression of AKT2 under the control of the guard cell-specific GC1 promoter,26 resulted in further impairment of plant growth (Fig. 1). By combining diverse experimental approaches with mathematical simulation methods, an existing model for phloem (re)loading18,27 was fundamentally improved. This allowed the uncovering of a novel and interesting role of K+ in phloem physiology: K+ gradients present between the sieve element/companion cell (SE/CC) complex and the apoplast can serve as an energy source in phloem (re)loading processes. This “potassium battery” can be tapped by means of AKT2 regulation. This clarifies the observation of Deeken et al.28 that in AKT2 loss-of-function mutant plants, assimilates leaking away from the sieve tube were not efficiently reloaded into the main phloem stream.Open in a separate windowFigure 1AKT2 expressed only in guard cells delays plant development. (A–C) Representative wild-type, akt2-1 and akt2-1+pGC1:AKT2 complementation plants grown for 7 weeks (A), 9 weeks (B) and 12 weeks (C) under 12-h day/12-h night conditions at normal light intensity (150 µmol m−2 s−1). (D) akt2-1+pGC1:AKT2 developed a similar number of leaves as the akt2-1 knock out plants, but bolting-time was delayed. (B and E) After 9 weeks, wild-type plants were at an advanced bolting stage, akt2-1 plants had started bolting, but only initial signs of bolting were visible in akt2-1+pGC1:AKT2 plants. (C and F) At 12 weeks, akt2-1 plants had caught up with the wild-type and akt2-1+pGC1:AKT2 was just starting to bolt, although rosette-leaves were showing clear signs of senescence. For the generation of akt2-1+pGC1:AKT2, the AKT2 cDNA was fused to the guard cell-specific GC1 promoter26 kindly provided by J.I. Schroeder, San Diego. The pGC1:AKT2 construct was cloned into pGreen0229-35S by replacing the 35S promoter and then transformed into the akt2-1 knockout plant. All seeds were cold-treated for 24 h at 4°C. Plants were grown on artificial substrate (type GS-90, Einheitserde). After 2 weeks, seedlings were transferred to single pots. Plants were grown in 60% relative humidity at 21°C during the day and 18°C at night. Phenotypical analyses were done in the middle of the day. Data are shown as means ± SD of n ≥ 9 plants. Statistical analyses using Student''s t test: (D, WT/akt2-1: p < 2e-08; D, WT/pGC-AKT2: p < 2e-08; D, akt2-1/pGC-AKT2: p < 5e-03; E, WT/akt2-1: p < 4e-06; E, WT/pGC-AKT2: p < 1e-10; E, akt2-1/pGC-AKT2: p < 5e-04; F, WT/akt2-1: p = 0.51; F, WT/pGC-AKT2: p < 1e-10; F, akt2-1/pGC-AKT2: p < 1e-10).AKT2 expression is especially abundant in phloem tissues and the root stele, both of which are characterized by a poor availability of oxygen.29,30 This local internal hypoxia impairs respiratory activity of the vascular tissue and concomitantly, respiratory ATP production is reduced.31 As a consequence, phloem transport is very susceptible to decreasing oxygen supply to the plant.29,32 It is therefore comprehensible that the above mentioned support by the K+ driving force for sucrose retrieval is especially relevant in the phloem. Indeed Gajdanowicz et al.25 showed that transgenic plants lacking the AKT2 K+ channel were severely impaired in growth when exposed to mild hypoxia (10% v:v), whereas growth of wild-type plants was unaffected by this treatment. These observations illustrate the importance of biochemical flexibility in plant cells to cope with the energetic consequences of the steep oxygen concentration gradients that generally occur in plant stems and roots.In fact, the role of K+ gradients in driving sugar, amino acid and organic acid transport across plant cell membranes was first suggested several decades ago.33,34 Experimental evidence for this concept was provided by various tests in which pieces of plant tissue were incubated in solutions with different K+ concentrations and pH levels.33,34 Unfortunately, at that time the lack of genetic information to support this hypothesis (e.g., identifying transporter proteins that could provide a molecular mechanism to explain the working mechanism of substrate transport driven by a K+-motive force) resulted in this idea falling into oblivion. Indeed, the unequivocal experimental observation of this new role of K+ gradients in phloem reloading is extremely challenging. Under normal experimental conditions, K+ fluxes and sucrose fluxes are coupled during phloem loading in source tissues and unloading in sink tissues. Nonetheless, computational simulations predict that under certain conditions, a local K+/Suc antiport is also thermodynamically possible. In this antiport system, the energy from the K+ gradient is used to transport Suc into the phloem. This process is only transient; flooding the apoplast with K+ will decrease the K+ gradient. However, the gradient can be maintained for longer if surrounding cells take up the apoplastic K+ for their own use. A K+/Suc antiport will not occur in obvious sink or source tissues since the energy balances in such cells are fundamentally different. Consequently, in these tissues only the coupled symport of K+ and Suc can be observed. However, the computational predictions allowed the identification of the experimental conditions under which the effect of the K+/Suc antiport system is empirically observable at the whole plant level.An essential role in the regulation of AKT2 is played by (de)phosphorylation events of serine residues at positions S210 and S329. The replacement of both serines by asparagine (AKT2-S210N-S329N) resulted in a K+-selective leak that is locked in a continuously open mode when the channels are expressed in Xenopus oocytes. Under certain conditions, plants expressing the AKT2-S210N-S329N mutation showed growth benefits over wild-type plants; akt2-1+AKT2-S210N-S329N plants reach the generative state faster, possess an increased number of leaves and increased fresh weight (Fig. 2). Intuitively, one would expect a continuously open channel to cause severe problems for the plant, not a benefit as was observed here. We therefore have to postulate that phosphorylation at residues AKT2-S210 and AKT2-S329 is insufficient for converting AKT2 from an inward-rectifying into a non-rectifying channel; other, as yet unknown mechanisms, must contribute to the switch in the AKT2 gating mode. Such a concept would correspond to results that would otherwise be hard to explain. For instance, when both serine residues were replaced by glutamate, the mutant AKT2-S210E-S329E still showed wild-type characteristics.22 The S to E substitution is expected to mimic the phosphorylated state better than the S to N replacement. Furthermore, position AKT2-K197 has a fundamental influence on the AKT2 gating mode.23 AKT2 mutants with that particular lysine substituted with a serine are far less sensitive towards (de)phosphorylation; they display the characteristics of a pure inward-rectifying K+ channel,23 and transgenic Arabidopsis plants expressing AKT2 channels with this substitution showed the characteristics of akt2-1 knock-out plants.25 Initially, it was proposed that the positive charge is important for sensitizing AKT2 to phosphorylation. However, the charge-conserving mutant AKT2-K197R is similar to the charge inverting mutant AKT2-K197D,23 a purely inward-rectifying channel (Fig. 3). We therefore need to take into account that in plants, K197 may also be a target of post-translational modification.35 At present, we can explain the beneficial effect of the AKT2-S210N-S329N mutant on plant growth only by a multiple step regulation of AKT2 (Fig. 4). The double-N mutation would then bypass the phosphorylation step, but AKT2-S210N-S329N could still be deregulated into an inward-rectifying channel. Thus, AKT2 can be considered as a highly specialized Kin channel that can be converted into a leak-like channel by a cascade of post-translational modification steps.Open in a separate windowFigure 2Plants expressing the AKT2-S210N-S329N mutant reach the generative state faster than wild-type plants. The mutant channel AKT2-S210N-S329N was expressed under the control of the native AKT2 promoter in the akt2-1 knock-out background. (A) Photos of representative Arabidopsis thaliana plants grown 7 weeks under short day conditions (12-h day/12-h night, light intensity = 150 µE m−2s−1). Seven weeks after sowing, plants expressing only AKT2-S210N-S329N mutant channels (n = 22) differed significantly (Student''s t test, p < 4e-05) from wild-type plants (n = 20) in the height of the main inflorescent stalk (B) and fresh weight (C). At later time points, these differences decrease.25Open in a separate windowFigure 3The mutant AKT2-K197R channel is inward-rectifying. Steady-state current-voltage characteristics measured at the end of activation voltage steps. Currents were normalized to the current values measured at −145 mV in 10 mM K+ and are shown as means ± SD (n = 6).Open in a separate windowFigure 4Minimal model for AKT2 gating-mode regulation. To switch AKT2 from an inward-rectifying into a non-rectifying channel, at least two post-translational steps are postulated. (1) Phosphorylation at residues AKT2-S210 and AKT2-S329 (transitions [1]→[2] and [3]→[4]) and (2) a yet unknown modification that most likely involves the residue AKT2-K197 (transitions [1]→[3] and [2]→[4]). Only after both modifications will AKT2 allow the efflux of K+ (state [4]). 相似文献
55.
Adrian Egli Deanna M. Santer Daire O'Shea Khaled Barakat Mohammedyaseen Syedbasha Madeleine Vollmer Aliyah Baluch Rakesh Bhat Jody Groenendyk Michael A. Joyce Luiz F. Lisboa Brad S. Thomas Manuel Battegay Nina Khanna Thomas Mueller D. Lorne J. Tyrrell Michael Houghton Atul Humar Deepali Kumar 《PLoS pathogens》2014,10(12)
Influenza is a major cause of morbidity and mortality in immunosuppressed persons, and vaccination often confers insufficient protection. IL-28B, a member of the interferon (IFN)-λ family, has variable expression due to single nucleotide polymorphisms (SNPs). While type-I IFNs are well known to modulate adaptive immunity, the impact of IL-28B on B- and T-cell vaccine responses is unclear. Here we demonstrate that the presence of the IL-28B TG/GG genotype (rs8099917, minor-allele) was associated with increased seroconversion following influenza vaccination (OR 1.99 p = 0.038). Also, influenza A (H1N1)-stimulated T- and B-cells from minor-allele carriers showed increased IL-4 production (4-fold) and HLA-DR expression, respectively. In vitro, recombinant IL-28B increased Th1-cytokines (e.g. IFN-γ), and suppressed Th2-cytokines (e.g. IL-4, IL-5, and IL-13), H1N1-stimulated B-cell proliferation (reduced 70%), and IgG-production (reduced>70%). Since IL-28B inhibited B-cell responses, we designed antagonistic peptides to block the IL-28 receptor α-subunit (IL28RA). In vitro, these peptides significantly suppressed binding of IFN-λs to IL28RA, increased H1N1-stimulated B-cell activation and IgG-production in samples from healthy volunteers (2-fold) and from transplant patients previously unresponsive to vaccination (1.4-fold). Together, these findings identify IL-28B as a key regulator of the Th1/Th2 balance during influenza vaccination. Blockade of IL28RA offers a novel strategy to augment vaccine responses. 相似文献
56.
Priscila P. Santos Fernando Oliveira Vanessa C. M. P. Ferreira Bertha F. Polegato Meliza G. Roscani Ana Angelica Fernandes Pamela Modesto Bruna P. M. Rafacho Silmeia G. Zanati Annarita Di Lorenzo Luiz S. Matsubara Sergio A. R. Paiva Leonardo A. M. Zornoff Marcos F. Minicucci Paula S. Azevedo 《PloS one》2014,9(12)
Background/Aims
Experimental and clinical studies have shown the direct toxic effects of cigarette smoke (CS) on the myocardium, independent of vascular effects. However, the underlying mechanisms are not well known.Methods
Wistar rats were allocated to control (C) and cigarette smoke (CS) groups. CS rats were exposed to cigarette smoke for 2 months.Results
After that morphometric, functional and biochemical parameters were measured. The echocardiographic study showed enlargement of the left atria, increase in the left ventricular systolic volume and reduced systolic function. Within the cardiac metabolism, exposure to CS decreased beta hydroxy acyl coenzyme A dehydrogenases and citrate synthases and increased lactate dehydrogenases. Peroxisome proliferator-activated receptor alpha (PPARα) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) were expressed similarly in both groups. CS increased serum lipids and myocardial triacylglycerols (TGs). These data suggest that impairment in fatty acid oxidation and the accumulation of cardiac lipids characterize lipotoxicity. CS group exhibited increased oxidative stress and decreased antioxidant defense. Finally, the myocyte cross-sectional area and active Caspase 3 were increased in the CS group.Conclusion
The cardiac remodeling that was observed in the CS exposure model may be explained by abnormalities in energy metabolism, including lipotoxicity and oxidative stress. 相似文献57.
Grasielle Pereira Jannuzzi Nicole de Araújo Souza Kátia Sanches Françoso Roney Henrique Pereira Raquel Possemozer Santos Gilberto Hideo Kaihami José Roberto Fogaça de Almeida Wagner Luiz Batista André Corrêa Amaral Andrea Queiroz Maranhão Sandro Rogério de Almeida Karen Spadari Ferreira 《Microbes and infection / Institut Pasteur》2018,20(1):48-56
Paracoccidioidomycosis (PCM) is a systemic mycosis with lymphatic dissemination that is caused by Paracoccidioides species. Treatment of PCM consists of chemotherapeutics such as itraconazole, trimethoprim, sulfamethoxazole or amphotericin B. However, several studies are aiming to develop therapeutic alternatives for the treatment of fungal infection using new molecules as adjuvants. The single-chain variable fragments (scFv) from an antibody that mimics the main fungal component incorporated within poly(lactide-co-glycolic) acid (PLGA) nanoparticles helped treat the fungal disease. After expressing the scFv in Picchia pastoris (P. pastoris), the recombinant molecules were coupled with PLGA, and the BALB/c mice were immunized before or after infection with yeast Paracoccidioides brasiliensis (P. brasiliensis). Our results showed decreased disease progression and decreased fungal burden. Taken together, our results showed an increased of IFN-γ and IL-12 cytokine production and an increased number of macrophages and dendritic cells in the pulmonary tissue of BALB/c mice treated with a high concentration of our molecule. Our data further confirm that the scFv plays an important role in the treatment of experimental PCM. 相似文献
58.
Timmers LF Ducati RG Sánchez-Quitian ZA Basso LA Santos DS de Azevedo WF 《Journal of molecular modeling》2012,18(2):467-479
Cytidine Deaminase (CD) is an evolutionarily conserved enzyme that participates in the pyrimidine salvage pathway recycling cytidine and deoxycytidine into uridine and deoxyuridine, respectively. Here, our goal is to apply computational techniques in the pursuit of potential inhibitors of Mycobacterium tuberculosis CD (MtCDA) enzyme activity. Molecular docking simulation was applied to find the possible hit compounds. Molecular dynamics simulations were also carried out to investigate the physically relevant motions involved in the protein-ligand recognition process, aiming at providing estimates for free energy of binding. The proposed approach was capable of identifying a potential inhibitor, which was experimentally confirmed by IC50 evaluation. Our findings open up the possibility to extend this protocol to different databases in order to find new potential inhibitors for promising targets based on a rational drug design process. 相似文献
59.
Petsch Danielle Katharine Ribas Luiz Guilherme dos Santos Mantovano Tatiane Pulzatto Mikaela Marques Alves Andreia Teixeira Pinha Gisele Daiane Thomaz Sidinei Magela 《Hydrobiologia》2021,848(9):2319-2330
Hydrobiologia - Biological invasions and climate change are important drivers of biodiversity loss. In freshwater ecosystems, golden and zebra mussels are two highly aggressive invasive species... 相似文献
60.
João Paulo Rodrigues Martins Luiz Carlos de Almeida Rodrigues Lorenzo Toscano Conde Andreia Barcelos Passos Lima Gontijo Antelmo Ralph Falqueto 《Plant biosystems》2020,154(1):87-99
AbstractUnder in vitro culture conditions, plants may present physiological and anatomical disorders, which can interfere negatively after ex vitro transfer. The aim of this investigation was to analyze the impacts of natural ventilation and sucrose supply on the anatomy and physiology of Vriesea imperialis. Plants previously grown in vitro were transferred to culture medium containing 0, 15, 30 or 45?g L?1 sucrose. Three different culture container sealing systems were tested: lids with a green filter (81.35 gas exchanges per day), yellow filter (13.09 gas exchanges per day) or lids with a yellow filter covered with three layers of transparent polyvinylchloride (PVC) film (blocking fluent gas exchange). Sucrose concentrations influenced thickness, lignin and suberin deposition of exodermis cell wall. The modifications verified in leaves, such as higher density of stomata and trichome scales, showed that sucrose can induce osmotic stress in the plants. Photomixotrophic conditions, using containers with intermediate rate of gas exchange (yellow filter) and with 15–30?g L?1 sucrose, produced an improvement in the growth traits and did not induce anatomical and physiological disturbances. 相似文献