首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   947篇
  免费   77篇
  国内免费   1篇
  2022年   8篇
  2021年   21篇
  2020年   16篇
  2019年   11篇
  2018年   15篇
  2017年   22篇
  2016年   25篇
  2015年   32篇
  2014年   49篇
  2013年   57篇
  2012年   61篇
  2011年   58篇
  2010年   42篇
  2009年   28篇
  2008年   35篇
  2007年   43篇
  2006年   30篇
  2005年   32篇
  2004年   27篇
  2003年   34篇
  2002年   26篇
  2001年   16篇
  2000年   34篇
  1999年   19篇
  1998年   8篇
  1997年   5篇
  1996年   11篇
  1995年   6篇
  1994年   9篇
  1993年   4篇
  1992年   15篇
  1991年   14篇
  1990年   13篇
  1989年   27篇
  1988年   13篇
  1987年   11篇
  1986年   13篇
  1985年   12篇
  1984年   10篇
  1983年   13篇
  1979年   6篇
  1978年   4篇
  1977年   8篇
  1976年   6篇
  1974年   3篇
  1972年   5篇
  1971年   8篇
  1970年   5篇
  1969年   5篇
  1951年   4篇
排序方式: 共有1025条查询结果,搜索用时 15 毫秒
101.
102.
103.
The seven-transmembrane-spanning receptors of the FZD1–10 class are bound and activated by the WNT family of lipoglycoproteins, thereby inducing a complex network of signaling pathways. However, the specificity of the interaction between mammalian WNT and FZD proteins and the subsequent signaling cascade downstream of the different WNT-FZD pairs have not been systematically addressed to date. In this study, we determined the binding affinities of various WNTs for different members of the FZD family by using bio-layer interferometry and characterized their functional selectivity in a cell system. Using purified WNTs, we show that different FZD cysteine-rich domains prefer to bind to distinct WNTs with fast on-rates and slow off-rates. In a 32D cell-based system engineered to overexpress FZD2, FZD4, or FZD5, we found that WNT-3A (but not WNT-4, -5A, or -9B) activated the WNT-β-catenin pathway through FZD2/4/5 as measured by phosphorylation of LRP6 and β-catenin stabilization. Surprisingly, different WNT-FZD pairs showed differential effects on phosphorylation of DVL2 and DVL3, revealing a previously unappreciated DVL isoform selectivity by different WNT-FZD pairs in 32D cells. In summary, we present extensive mapping of WNT-FZD cysteine-rich domain interactions complemented by analysis of WNT-FZD pair functionality in a unique cell system expressing individual FZD isoforms. Differential WNT-FZD binding and selective functional readouts suggest that endogenous WNT ligands evolved with an intrinsic natural bias toward different downstream signaling pathways, a phenomenon that could be of great importance in the design of FZD-targeting drugs.  相似文献   
104.
105.
106.
107.
Coevolving hosts and parasites can adapt to their local antagonist. In studies on natural populations, the observation of local adaptation patterns is thus often taken as indirect evidence for coevolution. Based on this approach, coevolution was previously inferred from an overall pattern of either parasite or host local adaptation. Many studies, however, failed to detect such a pattern. One explanation is that the studied system was not subject to coevolution. Alternatively, coevolution occurred, but remained undetected because it took different routes in different populations. In some populations, it is the host that is locally adapted, whereas in others it is the parasite, leading to the absence of an overall local adaptation pattern. Here, we test for overall as well as population-specific patterns of local adaptation using experimentally coevolved populations of the nematode Caenorhabditis elegans and its bacterial microparasite Bacillus thuringiensis. Furthermore, we assessed the importance of random interaction effects using control populations that evolved in the absence of the respective antagonist. Our results demonstrate that experimental coevolution produces distinct local adaptation patterns in different replicate populations, including host, parasite or absence of local adaptation. Our study thus provides experimental evidence of the predictions of the geographical mosaic theory of coevolution, i.e. that the interaction between parasite and host varies across populations.  相似文献   
108.
Human papillomaviruses (HPVs) are a family of small non-enveloped DNA viruses. Some genital HPV types, including HPV type 16 (HPV16), are the causative agent for the development of cancer at the site of infection. HPVs encode two capsid proteins, L1 and L2. After endocytic cell entry and egress from endosomes, L2 accompanies the viral DNA to the nucleus where replication is initiated. For cytoplasmic transport, L2 interacts with the microtubule network via the motor protein complex dynein. We have performed yeast two-hybrid screening and identified the dynein light chain DYNLT1 (previously called Tctex1) as interaction partner of HPV16 L2. Using co-immunoprecipitation and immunofluorescence colocalization studies we confirmed the L2-DYNLT1 interaction in mammalian cells. Further studies revealed that DYNLT3, the second member of the Tctex-light chain family, also interacts with L2 in vitro and in vivo, whereas other constituents of the dynein complex were not found to associate with L2. Depletion of DYNLT1 and DYNLT3 by specific siRNAs or cytosolic delivery of light chain-specific antibodies inhibited infection of HPV16. Therefore, this work identified two host cell proteins involved in HPV16 infection that are most likely required for transport purposes towards the nucleus.  相似文献   
109.

Background

Deubiquitinating enzymes (DUBs) are proteases that process ubiquitin (Ub) or ubiquitin-like gene products, remodel polyubiquitin(-like) chains on target proteins, and counteract protein ubiquitination exerted by E3 ubiquitin-ligases. A wealth of studies has established the relevance of DUBs to the control of physiological processes whose subversion is known to cause cellular transformation, including cell cycle progression, DNA repair, endocytosis and signal transduction. Altered expression of DUBs might, therefore, subvert both the proteolytic and signaling functions of the Ub system.

Methodology/Principal Findings

In this study, we report the first comprehensive screening of DUB dysregulation in human cancers by in situ hybridization on tissue microarrays (ISH-TMA). ISH-TMA has proven to be a reliable methodology to conduct this kind of study, particularly because it allows the precise identification of the cellular origin of the signals. Thus, signals associated with the tumor component can be distinguished from those associated with the tumor microenvironment. Specimens derived from various normal and malignant tumor tissues were analyzed, and the “normal” samples were derived, whenever possible, from the same patients from whom tumors were obtained. Of the ∼90 DUBs encoded by the human genome, 33 were found to be expressed in at least one of the analyzed tissues, of which 22 were altered in cancers. Selected DUBs were subjected to further validation, by analyzing their expression in large cohorts of tumor samples. This analysis unveiled significant correlations between DUB expression and relevant clinical and pathological parameters, which were in some cases indicative of aggressive disease.

Conclusions/Significance

The results presented here demonstrate that DUB dysregulation is a frequent event in cancer, and have implications for therapeutic approaches based on DUB inhibition.  相似文献   
110.
The immunoglobulin superfamily recognition molecule L1 plays important functional roles in the developing and adult nervous system. Metalloprotease-mediated cleavage of this adhesion molecule has been shown to stimulate cellular migration and neurite outgrowth. We demonstrate here that L1 cleavage is mediated by two distinct members of the disintegrin and metalloprotease family, ADAM10 and ADAM17. This cleavage is differently regulated and leads to the generation of a membrane bound C-terminal fragment, which is further processed through gamma-secretase activity. Pharmacological approaches with two hydroxamate-based inhibitors with different preferences in blocking ADAM10 and ADAM17, as well as loss of function and gain of function studies in murine embryonic fibroblasts, showed that constitutive shedding of L1 is mediated by ADAM10 while phorbol ester stimulation or cholesterol depletion led to ADAM17-mediated L1 cleavage. In contrast, N-methyl-d-aspartate treatment of primary neurons stimulated ADAM10-mediated L1 shedding. Both proteases were able to affect L1-mediated adhesion and haptotactic migration of neuronal cells. In particular, both proteases were involved in L1-dependent neurite outgrowth of cerebellar neurons. Thus, our data identify ADAM10 and ADAM17 as differentially regulated L1 membrane sheddases, both critically affecting the physiological functions of this adhesion protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号