首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2826篇
  免费   239篇
  3065篇
  2021年   33篇
  2020年   30篇
  2019年   27篇
  2018年   48篇
  2017年   32篇
  2016年   65篇
  2015年   92篇
  2014年   95篇
  2013年   163篇
  2012年   155篇
  2011年   150篇
  2010年   104篇
  2009年   71篇
  2008年   114篇
  2007年   135篇
  2006年   87篇
  2005年   94篇
  2004年   85篇
  2003年   81篇
  2002年   101篇
  2001年   70篇
  2000年   76篇
  1999年   62篇
  1998年   36篇
  1997年   22篇
  1996年   26篇
  1995年   34篇
  1994年   24篇
  1992年   42篇
  1991年   57篇
  1990年   62篇
  1989年   56篇
  1988年   45篇
  1987年   27篇
  1986年   33篇
  1985年   32篇
  1984年   30篇
  1983年   29篇
  1982年   34篇
  1981年   30篇
  1979年   31篇
  1978年   33篇
  1977年   20篇
  1973年   23篇
  1972年   23篇
  1971年   23篇
  1970年   29篇
  1968年   20篇
  1967年   21篇
  1966年   20篇
排序方式: 共有3065条查询结果,搜索用时 0 毫秒
101.
102.
103.
To determine whether replete subadult Ixodes ticks detach more frequently from resting than from active hosts, diverse rodents and lizards were caged in an apparatus designed to record the ticks' sites of detachment relative to the resting site of the host. Replete larval Ixodes ricinus and Ixodes dammini accumulated mainly beneath the resting places of the mice (Apodemus agrarius and Peromyscus leucopus) most frequently parasitized in nature. Although nymphal I. ricinus similarly detached where these mice rested, nymphal I. dammini detached more randomly. When lizards were used as hosts, both subadult stages of I. ricinus tended to detach away from their main resting sites; these ticks detached from squirrels more randomly. Detachment ratios for other rodent hosts, that are abundantly infested by the larvae of these ticks in nature (Apodemus flavicollis and Clethrionomys glareolus), could not be derived because nymphs generally failed to attach. Our observations are consistent with reports that both subadult stages of I. dammini, but not the adult, feed on the same kind of nest-dwelling hosts and that the host range of I. ricinus is less focused. Detachment of mouse-feeding larvae from resting mice promotes subsequent nymphal attachment to conspecific hosts, and the absence of such behavior among nymphs facilitates access of the resulting adults to deer.  相似文献   
104.
Nitric oxide (NO) exerts a wide range of its biological properties via its interaction with mitochondria. By competing with O(2), physiologically relevant concentrations of NO reversibly inhibit cytochrome oxidase and decrease O(2) consumption, in a manner resembling a pharmacological competitive antagonism. The inhibition regulates many cellular functions, by e.g., regulating the synthesis of ATP and the formation of mitochondrial transmembrane potential (Delta Psi). NO regulates the oxygen consumption of both the NO-producing and the neighboring cells; thus, it can serve as autoregulator and paracrine modulator of the respiration. On the other hand, NO reacts avidly with superoxide anion (O(2)(-)) to produce the powerful oxidizing agent, peroxynitrite (ONOO(-)) which affects mitochondrial functions mostly in an irreversible manner. How mitochondria and cells harmonize the reversible effects of NO versus the irreversible effects of ONOO(-) will be discussed in this review article. The exciting recent finding of mitochondrial NO synthase will also be discussed.  相似文献   
105.
Early development in Xenopus laevis is programmed in part by maternally inherited mRNAs that are synthesized and stored in the growing oocyte. During oocyte maturation, several of these messages are translationally activated by poly(A) elongation, which in turn is regulated by two cis elements in the 3' untranslated region, the hexanucleotide AAUAAA and a cytoplasmic polyadenylation element (CPE) consisting of UUUUUAU or similar sequence. In the early embryo, a different set of maternal mRNAs is translationally activated. We have shown previously that one of these, C12, requires a CPE consisting of at least 12 uridine residues, in addition to the hexanucleotide, for its cytoplasmic polyadenylation and subsequent translation (R. Simon, J.-P. Tassan, and J.D. Richter, Genes Dev. 6:2580-2591, 1992). To assess whether this embryonic CPE functions in other maternal mRNAs, we have chosen Cl1 RNA, which is known to be polyadenylated during early embryogenesis (J. Paris, B. Osborne, A. Couturier, R. LeGuellec, and M. Philippe, Gene 72:169-176, 1988). Wild-type as well as mutated versions of Cl1 RNA were injected into fertilized eggs and were analyzed for cytoplasmic polyadenylation at times up to the gastrula stage. This RNA also required a poly(U) CPE for cytoplasmic polyadenylation in embryos, but in this case the CPE consisted of 18 uridine residues. In addition, the timing and extent of cytoplasmic poly(A) elongation during early embryogenesis were dependent upon the distance between the CPE and the hexanucleotide. Further, as was the case with Cl2 RNA, Cl1 RNA contains a large masking element that prevents premature cytoplasmic polyadenylation during oocyte maturation. To examine the factors that may be involved in the cytoplasmic polyadenylation of both C12 and C11 RNAs, we performed UV cross-linking experiments in egg extracts. Two proteins with sizes of ~36 and ~45 kDa interacted specifically with the CPEs of both RNAs, although they bound preferentially to the C12 CPE. The role that these proteins might play in cytoplasmic polyadenylation is discussed.  相似文献   
106.
107.
Using immunohistochemical labeling against acetylated a‐tubulin and serotonin in combination with confocal laser scanning microscopy and 3D‐reconstruction, we investigated the temporary freshwater pond inhabitant Branchinella sp. (Crustacea: Branchiopoda: Anostraca) for the first time to provide detailed data on the development of the anostracan nervous system. Protocerebral sense organs such as the nauplius eye and frontal filament organs are present as early as the hatching stage L0. In the postnaupliar region, two terminal pioneer neurons grow from posterior to anterior to connect the mandibular neuromeres. The first protocerebral neuropil to emerge is not part of the central complex but represents the median neuropil, and begins to develop from L0+ onwards. In stage L3, the first evidence of developing compound eyes is visible. This is followed by the formation of the visual neuropils and the neuropils of the central complex in the protocerebrum. From the deutocerebral lobes, the projecting neuron tract proceeds to both sides of the lateral protocerebrum, forming a chiasma just behind the central body. In the postnaupliar region, the peripheral nervous system, commissures and connectives develop along an anterior–posterior gradient after the fasciculation of the terminal pioneer neurons with the mandibular neuromere. The peripheral nervous system in the thoracic segments consists of two longitudinal neurite bundles on each side which connect the intersegmental nerves, together with the ventral nervous system forming an orthogon‐like network. Here, we discuss, among other things, the evidence of a fourth nauplius eye nerve and decussating projecting neuron tract found in Branchinella sp., and provide arguments to support our view that the crustacean frontal filament (organ) and onychophoran primary antenna are homologous. J. Morphol. 277:1423–1446, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
108.
It was hypothesized that seasonality and resource availability altered through tree girdling were major determinants of the phylogenetic composition of the archaeal and bacterial community in a temperate beech forest soil. During a 2-year field experiment, involving girdling of beech trees to intercept the transfer of easily available carbon (C) from the canopy to roots, members of the dominant phylogenetic microbial phyla residing in top soils under girdled versus untreated control trees were monitored at bimonthly intervals through 16S rRNA gene-based terminal restriction fragment length polymorphism profiling and quantitative PCR analysis. Effects on nitrifying and denitrifying groups were assessed by measuring the abundances of nirS and nosZ genes as well as bacterial and archaeal amoA genes. Seasonal dynamics displayed by key phylogenetic and nitrogen (N) cycling functional groups were found to be tightly coupled with seasonal alterations in labile C and N pools as well as with variation in soil temperature and soil moisture. In particular, archaea and acidobacteria were highly responsive to soil nutritional and soil climatic changes associated with seasonality, indicating their high metabolic versatility and capability to adapt to environmental changes. For these phyla, significant interrelations with soil chemical and microbial process data were found suggesting their potential, but poorly described contribution to nitrification or denitrification in temperate forest soils. In conclusion, our extensive approach allowed us to get novel insights into effects of seasonality and resource availability on the microbial community, in particular on hitherto poorly studied bacterial phyla and functional groups.  相似文献   
109.
The stromal processing peptidase (SPP) cleaves a large diversity of chloroplast precursor proteins, removing an N-terminal transit peptide. We predicted previously that this key step of the import pathway is mediated by features of the transit peptide that determine precursor binding and cleavage followed by transit peptide conversion to a degradable substrate. Here we performed competition experiments using synthesized oligopeptides of the transit peptide of ferredoxin precursor to investigate the mechanism of these processes. We found that binding and processing of ferredoxin precursor depend on specific interactions of SPP with the region consisting of the C-terminal 12 residues of the transit peptide. Analysis of four other precursors suggests that processing depends on the same region, although their transit peptides are highly divergent in primary sequence and length. Upon processing, SPP terminates its interaction with the transit peptide by a second cleavage, converting it to a subfragment form. From the competition experiments we deduce that SPP releases a subfragment consisting of the transit peptide without its original C terminus. Interestingly, examination of the ATP-dependent metallopeptidase activity responsible for degradation of transit peptide subfragments suggests that it may recognize other unrelated peptides and, hence, act separately from SPP as a novel stromal oligopeptidase.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号