首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3185篇
  免费   210篇
  国内免费   1篇
  2023年   22篇
  2022年   33篇
  2021年   72篇
  2020年   42篇
  2019年   49篇
  2018年   89篇
  2017年   47篇
  2016年   97篇
  2015年   152篇
  2014年   167篇
  2013年   245篇
  2012年   290篇
  2011年   249篇
  2010年   171篇
  2009年   138篇
  2008年   204篇
  2007年   176篇
  2006年   161篇
  2005年   150篇
  2004年   140篇
  2003年   140篇
  2002年   148篇
  2001年   32篇
  2000年   17篇
  1999年   31篇
  1998年   28篇
  1997年   25篇
  1996年   31篇
  1995年   23篇
  1994年   32篇
  1993年   25篇
  1992年   14篇
  1991年   16篇
  1990年   14篇
  1989年   5篇
  1988年   9篇
  1987年   9篇
  1986年   7篇
  1985年   6篇
  1984年   11篇
  1983年   14篇
  1982年   8篇
  1980年   8篇
  1979年   10篇
  1978年   8篇
  1977年   5篇
  1974年   6篇
  1973年   6篇
  1971年   2篇
  1964年   2篇
排序方式: 共有3396条查询结果,搜索用时 437 毫秒
101.
Kenny-Caffey syndrome (KCS) and the similar but more severe osteocraniostenosis (OCS) are genetic conditions characterized by impaired skeletal development with small and dense bones, short stature, and primary hypoparathyroidism with hypocalcemia. We studied five individuals with KCS and five with OCS and found that all of them had heterozygous mutations in FAM111A. One mutation was identified in four unrelated individuals with KCS, and another one was identified in two unrelated individuals with OCS; all occurred de novo. Thus, OCS and KCS are allelic disorders of different severity. FAM111A codes for a 611 amino acid protein with homology to trypsin-like peptidases. Although FAM111A has been found to bind to the large T-antigen of SV40 and restrict viral replication, its native function is unknown. Molecular modeling of FAM111A shows that residues affected by KCS and OCS mutations do not map close to the active site but are clustered on a segment of the protein and are at, or close to, its outer surface, suggesting that the pathogenesis involves the interaction with as yet unidentified partner proteins rather than impaired catalysis. FAM111A appears to be crucial to a pathway that governs parathyroid hormone production, calcium homeostasis, and skeletal development and growth.  相似文献   
102.
BackgroundRice bran enzymatic extract (RBEE) used in this study has shown beneficial activities against dyslipidemia, hyperinsulinemia and hypertension. Our aim was to investigate the effects of a diet supplemented with RBEE in vascular impairment developed in obese Zucker rats and to evaluate the main mechanisms mediating this action.Methods and resultsObese Zucker rats were fed a 1% and 5% RBEE-supplemented diet (O1% and O5%). Obese and their lean littermates fed a standard diet were used as controls (OC and LC, respectively). Vascular function was evaluated in aortic rings in organ baths. The role of nitric oxide (NO) was investigated by using NO synthase (NOS) inhibitors. Aortic expression of endothelial NOS (eNOS), inducible NOS (iNOS), tumor necrosis factor (TNF)-α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits and superoxide production in arterial wall were determined. Endothelial dysfunction and vascular hyperreactivity to phenylephrine in obese rats were ameliorated by RBEE treatment, particularly with 1% RBEE. Up-regulation of eNOS protein expression in RBEE-treated aortas should contribute to this activity. RBEE attenuated vascular inflammation by reducing aortic iNOS and TNF-α expression. Aortas from RBEE-treated groups showed a significant decrease of superoxide production and down-regulation of NADPH oxidase subunits.ConclusionRBEE treatment restored endothelial function and vascular contractility in obese Zucker rats through a reduction of vascular inflammation and oxidative stress. These results show the nutraceutical potential of RBEE to prevent obesity-related vascular complications.  相似文献   
103.
Despite correct purity of crude peptides prepared on trityl resin by Fmoc/tBu microwave assisted solid phase peptide synthesis, surprisingly, lower yields than those expected were obtained while preparing C-terminal acid peptides. This could be explained by cyclization/cleavage through diketopiperazine formation during the second amino acid deprotection and third amino acid coupling. However, we provide here evidence that this is not the case and that this yield loss was due to high temperature promoted hydrolysis of the 2-chlorotrityl ester, yielding premature cleavage of the C-terminal acid peptides.  相似文献   
104.
By applying the framework proposed by Millennium Ecosystem Assessment, we analysed the current state and trends of 20 ecosystem services provided by Spanish rivers and riparian areas using 139 indicators. We compared the obtained results with the Europe and UK assessment. It is the first document that attempts to analyse the importance of services provided by Spanish rivers and riparian areas, and it forms part of the evaluation carried out for the Spanish Millennium Ecosystem Assessment. Among the provisioning services, freshwater, hydropower energy and genetic resources were classified as high importance, and water regulation and self-purification capacity, and natural hazard mitigation are among the regulating services, with landscape-aesthetic values and recreation and ecotourism featuring among the cultural services. About 61 % of the assessed ecosystem services are currently declining or degrading, but are higher than the percentage calculated for Europe (45 %) or for the UK (53 %). All regulating services are degrading, especially water regulation, natural hazard mitigation, soil formation and fertility and biological control, and the cultural services related to rural populations. Likewise, the biodiversity of Spanish aquatic ecosystems is decreasing rapidly. Land use changes and overexploitation of biological and mineral raw materials have been the main direct drivers of change in Spanish rivers and riparian zones, and relate directly to increase urbanised areas and irrigated agriculture. Finally, we draw some considerations on alternative models for aquatic ecosystems management which maintain aquatic ecosystem services and their biodiversity.  相似文献   
105.
106.
Highlights? The recognition specificity of 70 SH2 domains is probed ? Recognition specificity diverges faster than sequence ? PepspotDB is a database of protein interactions mediated by SH2 domains  相似文献   
107.
Exercise provides clear beneficial effects for the prevention of numerous diseases. However, many of the molecular events responsible for the curative and protective role of exercise remain elusive. The recent discovery of FNDC5/irisin protein that is liberated by muscle tissue in response to exercise might be an important finding with regard to this unsolved mechanism. The most striking aspect of this myokine is its alleged capacity to drive brown-fat development of white fat and thermogenesis. However, the nature and secretion form of this new protein is controversial. The present study reveals that rat skeletal muscle secretes a 25 kDa form of FNDC5, while the 12 kDa/irisin theoretical peptide was not detected. More importantly, this study is the first to reveal that white adipose tissue (WAT) also secretes FNDC5; hence, it may also behave as an adipokine. Our data using rat adipose tissue explants secretomes proves that visceral adipose tissue (VAT), and especially subcutaneous adipose tissue (SAT), express and secrete FNDC5. We also show that short-term periods of endurance exercise training induced FNDC5 secretion by SAT and VAT. Moreover, we observed that WAT significantly reduced FNDC5 secretion in fasting animals. Interestingly, WAT of obese animals over-secreted this hormone, which might suggest a type of resistance. Because 72% of circulating FNDC5/irisin was previously attributed to muscle secretion, our findings suggest a muscle-adipose tissue crosstalk through a regulatory feedback mechanism.  相似文献   
108.
Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.  相似文献   
109.
For in vitro differentiation of bone marrow-derived mesenchymal stem cells/mesenchymal stromal cells into osteoblasts by 2-dimensional cell culture a variety of protocols have been used and evaluated in the past. Especially the external phosphate source used to induce mineralization varies considerably both in respect to chemical composition and concentration. In light of the recent findings that inorganic phosphate directs gene expression of genes crucial for bone development, the need for a standardized phosphate source in in vitro differentiation becomes apparent. We show that chemical composition (inorganic versus organic phosphate origin) and concentration of phosphate supplementation exert a severe impact on the results of gene expression for the genes commonly used as markers for osteoblast formation as well as on the composition of the mineral formed. Specifically, the intensity of gene expression does not necessarily correlate with a high quality mineralized matrix. Our study demonstrates advantages of using inorganic phosphate instead of β-glycerophosphate and propose colorimetric quantification methods for calcium and phosphate ions as cost- and time-effective alternatives to X-ray diffraction and Fourier-transform infrared spectroscopy for determination of the calcium phosphate ratio and concentration of mineral matrix formed under in vitro-conditions. We critically discuss the different assays used to assess in vitro bone formation in respect to specificity and provide a detailed in vitro protocol that could help to avoid contradictory results due to variances in experimental design.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号